
reUpNix: Reconfigurable and Updateable Embedded
Systems

Niklas Gollenstede
niklas.gollenstede@tuhh.de

Hamburg University of Technology
Germany

Ulf Kulau
ulf.kulau@tuhh.de

Hamburg University of Technology
Germany

Christian Dietrich
christian.dietrich@tuhh.de

Hamburg University of Technology
Germany

Abstract
Managing the life cycle of an embedded Linux stack is dif-
ficult, as we have to integrate in-house and third-party ser-
vices, prepare firmware images, and update the devices in
the field. Further, if device deployment is expensive (e.g. in
space), our stack should support multi-mission setups to
make the best use of our investment.
With reUpNix, we propose a methodology based on

NixOS that provides reproducible, updateable, and recon-
figurable embedded Linux stacks. For this, we identify the
shortcomings of NixOS for use on embedded devices, reduce
its base installation size by up to 86 percent, and make sys-
tem updates failure atomic and significantly smaller. We also
allow integration of third-party OCI images, which, due to
fine-grained file deduplication, require up to 24 percent less
on-disk space.

CCS Concepts: • Computer systems organization →
Maintainability and maintenance; Embedded software.

Keywords: reproducible systems, embedded systems, NixOS
ACM Reference Format:
Niklas Gollenstede, Ulf Kulau, and Christian Dietrich. 2023. reUp-
Nix: Reconfigurable and Updateable Embedded Systems. In Pro-
ceedings of the 24th ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES
’23), June 18, 2023, Orlando, FL, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3589610.3596273

1 Introduction
In the last decade, embedded systems’ software transitioned
from single specialized firmware programs to complex Linux-
based software stacks. Such embedded Linux systems are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LCTES ’23, June 18, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0174-0/23/06. . . $15.00
https://doi.org/10.1145/3589610.3596273

hardlink

Machine
Configuration

CubeSat #1
Ver. 1.1

CubeSat #1
Ver. 1.2

Update

System
Profile

Mission A
Remote Sens.

Mission B
Lightning Spot.

Mission B2
Fire & Lightning

Run-Time
Reconfig.

Service
Definition

Star Tracker
(3rd Party)

Video Proc. (A1)

C&C Module

Video Proc. (A2)

Software
Package

Docker/OCI
Image

numpy 1.20

glibc 2.6

numpy 1.24

Deduplicated
File Store

start.elf (e421)

arith.py (ab04)

libc.so (731f)

arith.py (ac8d)

Figure 1. reUpNix Overview. One device has one deployed
machine config with multiple system configs, each including
different OCI containers and/or Nix services.

most popular among developers [17], who appreciate their
source-code availability and compatibility with existing soft-
ware. Here, they can quickly compose a system from existing
components, adapt it, and debug it with well-known tools,
instead of building up their own development stack, perhaps
even being dependent on proprietary development tools.

However, with those systems also being connected to the
network, having software life-cycle management for the
whole software stack becomes crucial. We have to answer:
(C1) How are third-party and off-the-shelve components
integrated with our in-house software? (C2) Is the firmware-
derivation process automated and reproducible [22]? (C3) Can
software updates be applied to deployed systems without en-
dangering the device’s functionality? While those questions
are already challenging for locally-deployed systems, they
become even more critical for remotely-deployed systems
as manually reviving their devices is hard.
For example, the “New Space” industry brings more and

more Linux systems into space [3, 23, 31], and projects like
IBM Endurance [36] or SpaceCloud [27] even aim to provide
in-orbit execution platforms for containerized applications. A
general challenge for in-orbit updates are high requirements
regarding reliability and limited upload bandwidth [40]. The
latter mandates efficient processes, as uploads of the entire
firmware, especially when it comes to Linux based Payload-
Computers, directly conflict with the uplink bottleneck.
Orbital clouds could reduce costs and orbital debris by

reusing existing hardware, but also more mundane envi-
ronments like smart-cities would also benefit from sharing
deployed sensor networks. This brings forward two more
life-cycle challenges: (C4) How can we co-locate multiple

https://orcid.org/0009-0004-9395-7318
https://orcid.org/0000-0002-1662-880X
https://orcid.org/0000-0001-9258-0513
https://doi.org/10.1145/3589610.3596273
https://doi.org/10.1145/3589610.3596273

LCTES ’23, June 18, 2023, Orlando, FL, USA Niklas Gollenstede, Ulf Kulau, and Christian Dietrich

system configurations on the same machine, and (C5) how
do we reconfigure these systems at run time?
With reUpNix, we propose a methodology for design-

ing Linux-based software stacks for embedded systems that
are reproducible, updateable, and allow for reconfigurable
multi-mission scenarios (see Fig. 1). For this, we build on
the existing NixOS [14] Linux distribution, which is based
on the functional Nix package manager [13]. While Nix was
already used for packaging reproducible research [20] and
HPC workloads [8], it comes with trade-offs and shortcom-
ings that hinder its adoption for embedded systems.
In this paper, we identify and alleviate NixOS’ problems

and make it more suitable for usage in embedded systems.
We consider the contributions of this paper as follows:
• We identify the shortcomings of NixOS for embedded
systems and shrink its minimal deployment size.

• We propose a design that integrates multiple system con-
figurations, traditional containers, and isolated Nix-native
applications into one machine state.

• We make the machine-update and system-reconfiguration
process failure atomic and shrink the update size.
The rest of the paper is structured as follows: In Sec. 2,

we describe Nix, NixOS, and its different shortcomings that
hinder its adoption in embedded systems. In Sec. 3, we ad-
dress those issues and propose reUpNix as a methodology
to build embedded software stacks. We evaluate the quan-
tifiable aspects of our approach in Sec. 4, discuss our results
and reUpNix in Sec. 5, before we compare it to the related
work (Sec. 6), and conclude our paper (Sec. 7).

2 Nix and NixOS
Nix [13] is a software-package manager with its own func-
tional configuration language. A Nix program specifies ex-
ternal dependencies (e.g., sources) and configures the build
process of multiple, intertwined, and dependent packages.
When evaluating these programs, we derive per-package
build instructions, which we realize in topological depen-
dency order by executing the build commands in a sandbox
environment without network connectivity. Result of this
derivation are per-package file trees; the Nix components.
Shortcoming S1 (Language Flexibility): Nix gives devel-
opers a high degree of freedom in organizing their software
stack. Without further guidance or design structure, this can
result in high maintenance costs.

The derived components are stored as content-addressed
artifacts in the Nix store. To derive the address, the Nix inter-
preter calculates a cryptographic hash over the derived build
instructions, including the hashes of all build dependencies
and source-code archives used. Due to this transitive capture
and Nix’s build sandboxing, for a component’s content to
change, its address has to change as well. Since any (indirect)
version update results in a different address, Nix implements
strict version pinning.

The Nix store is a global directory (/nix/store/), where
components are stored as subdirectories whose names con-
tain their component addresses. As these components are
isolated file-trees, all run-time dependencies between com-
ponents have to be expressed as absolute file paths into other
components. For example, Nix uses the rpath property of
ELF binaries, which hard-codes the library-search path, to
refer to shared-library components explicitly. Different ver-
sions and variants of the same package can thus co-exist
on the same machine, and updates to newer versions are
transactional and can always be rolled back as long as the
old components are not removed. However, the necessity
for explicit references also results in component addresses
being sprinkled throughout many files. In combination with
the transitive hashing, this results in small updates having
an amplified change impact.
Shortcoming S2 (Size of System Updates): As Nix ampli-
fies the change impact, system updates often have to replace
components although (parts of) their semantic did not change.
In network-constrained (i.e., low bandwidth, uni-directional
connection) settings, the update transfer size is problematic.

While transfer size is usually not a concern for the typical
(desktop or server) Nix user, the space requirement of the Nix
store is a known issue, and with frequent updates, the Nix
store accumulates (outdated) components over time. There-
fore, Nix employs two mechanisms to reduce its on-disk size:
file deduplication and garbage collection.
For file-level deduplication, Nix uses a global content-

addressed links directory, where each file is stored under
its checksum. Whenever a component is pushed to the store,
Nix calculates the checksum of each file and queries the links
directory. If the file exists there, it is hard-linked and not
copied to its new location. Thereby, components, while hav-
ing different addresses, can still share resources on the file
level, even if they originate from different source packages.
Please note that this deduplication is only possible as all files
in the Nix store are immutable and read-only.
To get rid of outdated components, Nix performs

component-level garbage collection. By scanning files for
strings that look like component addresses, Nix calculates
the retained dependency graph, which is a subset of the build-
time dependency graph. Given a root set of currently-used
components, unreachable components are garbage collected.

Based on the Nix package manager, NixOS is a Linux dis-
tribution that extends Nix’s component model to cover a
complete system configuration. Included in nixpkgs, it comes
with an extensive package collection that currently consists
of over 80 000 package definitions.
Shortcoming S3 (System Size): NixOS packages usually
aim for functionality over minimal output sizes. Further, as the
automated dependency-graph scanning over-approximates the
actual run-time dependencies, NixOS systems tend to include
non-essential functionality and have a large installation size.

reUpNix: Reconfigurable and Updateable Embedded Systems LCTES ’23, June 18, 2023, Orlando, FL, USA

To build a complete system, NixOS stores configuration
(files) as components and introduces system profiles, a col-
lection of configurations and packages that, in combination,
form a complete, bootable system. At boot time, the user
chooses a profile at the bootloader, which loads the kernel
and the NixOS initial ramdisk, both of which reside outside
the Nix store. The ramdisk mounts the Nix store, and hands
over to the profile’s system-init process. For services or li-
braries that require well-known paths (like /etc/passwd),
NixOS populates /etc with symbolic links into the Nix store
and files that are dynamically created during boot.
Shortcoming S4 (Bootloader Updates): While NixOS
builds the kernel and ramdisk as components, it does not cover
configurable disk partitioning, and bootloader configurations
are partially realized outside the Nix build process, relying on
run-time system state. Therefore, the boot setup is not inher-
ently reproducible and updating it is not yet transactional.
While NixOS uses static version pinning to solve the

library-version problem, Docker [26], which further isolates
services via Linux namespaces, popularized another solution:
Docker services come as open container initiative (OCI) im-
ages, which wrap an application in a complete Linux installa-
tion (without a kernel), for which specialized size-optimized
distributions, like Alpine Linux [1], were developed. At this
point, OCI images can be considered the industry standard
for cross-vendor collaboration and service deployment.
Shortcoming S5 (Third-Party Packaging):While NixOS
directly supports running (service) components in Linux names-
paces, its current OCI integration requires a separate runtime.
Together with the entry burden of the Nix language, Nix only
poorly supports the integration of third-party packages.

Summarized, Nix and NixOS provide some unique features
(complete build and deployment description, transactional
updates, library multi-versioning), but it also has drawbacks
that are especially problematic for embedded systems (sys-
tem and update size, bootloader updates, language flexibility,
and third-party software).

3 reUpNix – A NixOS-Based Design
Methodology for Embedded Systems

With reUpNix, we propose a methodology to ease these
shortcomings (S1-5) while also addressing the mentioned
challenges (C1-5) for embedded Linux stacks.

3.1 Machine-, System-, and Service Configurations
To tame the flexibility of Nix (S1) and to give system de-
signers guidance in structuring their systems, we propose a
layered methodology that builds on existing NixOS concepts
but restricts and extends them with embedded systems in
mind. On this level, we also address the third-party inte-
gration (C1) and the multi-configuration (C4) challenge. In
the example (Fig. 1), a cubesat carries two missions (remote
sensors, lightning detection), which both use the camera

hardware; the second mission is then updated to also detect
wildfires. We discuss our methodology from the top down:

Machine Configuration The machine configuration
(MC) describes the state of a computing system (e.g., a Rasp-
berry Pi) at a given point in time. It lists the installed software
and its configuration, but also covers the disk partitioning
and the bootloader configuration. The MC is defined in a
Nix program, and the developer can describe multiple ma-
chine states in the same file, which can reuse and refine each
other. Thereby, a reUpNix repository can configure a fleet
of devices as well as multiple evolution steps per device.
From a derived MC, our automated installer builds a

bootable machine image. Up until now, NixOS does not pro-
vide an automated install process with flexible partition se-
tups, which is however necessary to get a fully reproducible
and automated embedded-system derivation pipeline (C2).
Our installer sets up loop-mounted images, performs the par-
titioning, and copies Nix-store components from the build
host to the image. For this, we copy all components that are
reachable in the retained dependency graph of the MC. Also,
we statically tailor an application-specific boot script that
replaces the usual one-size-fits-all boot script of NixOS.

At this level (see Fig. 1), we also see that a machine update,
covered in Sec. 3.3, is the transition between two MCs.
System Profile Below the MC level, we use the exist-

ing system profile (SP) abstraction of NixOS to describe a
bootable system state. Each SP consists of the reUpNix base
system, hardware-specific components (e.g., loadable kernel
modules), and user-defined services. Each MC explicitly ref-
erences the set of SPs (C4) that should be deployed at one
point in time (by installation or update).

SPs also address the third-party integration problem that
is specific to embedded systems (C1): In the cloud, the Docker
model became successful as it assumes that hardware is es-
sentially uniform and can be reduced to the file system and
network. However, for embedded systems, this assumption
does not hold, as applications often require specific hardware
drivers, which have to be inserted into the host kernel, break-
ing usual isolation models. By putting hardware-specific
components at the SP level, we acknowledge that system
integrators sometimes have to break service isolation and
different profiles can use different drivers. Further, instead
of making a complete container privileged (as Docker does),
reUpNix demands that the integrator clearly defines how to
integrate those privileged third-party modules.
Also at the SP level (see Fig. 1), we define that run-time

reconfiguration, which we will also cover in Sec. 3.3, is the
transition between two system profiles.

Services Each SP lists the services that should be started
at boot. Besides the base system and hardware-specific com-
ponents, reUpNix requires everything else to be a service.
All reUpNix services are started as containers in their own
Linux namespace, where components from the Nix store and

LCTES ’23, June 18, 2023, Orlando, FL, USA Niklas Gollenstede, Ulf Kulau, and Christian Dietrich

a minimal container base system are visible. Instead of rein-
venting the wheel, and since we already include systemd [30]
in our base system, use systemd-nspawn to start and manage
services at run time. systemd’s nested system management,
across container boundaries, gives us a complete view of the
dynamic system state at the booted SP level.
We support two types of services: Nix and OCI services.

WithNix services, a NixOS standard functionality that was de-
scribed as “graph-based containerization” [19], a regular Nix
component becomes the entry point for a service container.

For OCI services, we integrate standard OCI images [25],
which come as collections of file-system layers, into the sys-
tem (C1). Usually, the container runtime (e.g., Docker) as-
sembles these layers with overlayfs into a file-system tree
for the container. Layers are also the granularity of reuse.
If, for example, two images are derived from the exact same
Alpine distribution, the Alpine base layer is stored only once.

For reUpNix, we use a fine-grained sharing method: we
collapse all layers of an imported OCI image into one direc-
tory and store it as a Nix component. To start the services,
we use this component as the root directory for the container
and use overlayfs to provide, like Docker, a writable upper
layer. As the Nix store performs deduplication at the file level,
files can be reused between OCI images, but also between
the base system, Nix services, and other OCI services. Also,
as a result of collapsing, deleted files are truly removed from
the system and not only marked as deleted in a higher layer.

In our example (see Fig. 1), the “star tracker” for the remote
sensing mission is included as an OCI image. As the image
also uses glibc 2.6, the Nix store shares the libc.so file
between the image and the regular Nix component.

3.2 Size Reduction of the Base System
As NixOS was intended as a desktop and server Linux distri-
bution (S3), where disk space is abundant, it is rather relaxed
when it comes to disk usage. For embedded systems, a large
system not only requires a larger storage medium, but it
also results in larger and more frequent updates (S2) as the
update “attack surface” is enlarged. Therefore, for reUpNix,
we made an active effort to shrink the size of the base system
included in every MC. For this, we (1) remove standard com-
ponents and (2) shrink the size of individual components.
Instead of discussing all of our modifications, we describe our
minimization procedure exemplarily, naming our principles.
Localization Many packages include additional, non-

executable files that are not necessary for the system-level
core functionality. For example, to be usable for end users,
NixOS includes language localization for basic components
by default. As error messages will not be end-user visible,
we used existing NixOS configuration options to remove
localization from the system. Principle: Use existing feature
flags to shrink components to their functional core.
Perl interpreter By default, every NixOS installa-

tion includes the perl language interpreter as it is

Table 1. Qualitative Comparison of the Update Strategies
complete efficient reprod. safe reconfig.

In-Place Destructive [6] ++ + -- -- --
Recovery OS [5, 38] + - + + --
A/B Partitioning [5, 35, 38] ++ -- + ++ (+)
Min. OS + OCI [11, 37] -- + ◦ + +
Merged Trees [2, 14] + ++ ++ + ++

used to dynamically populate different configuration files
(e.g., /etc/passwd). To get rid of this dependency, reUp-
Nix creates the /etc as a read-only store component, with
more files pre-generated, and optionally uses an overlayfs

to provide for dynamic modifications (i.e., secret injection).
By making this NixOS run-time configuration step static,
we could remove perl as a run-time dependency. Principle:
Move dynamic variability to the derivation time.

Linux kernel NixOS, like most [33] distributions, com-
piles almost all drivers as loadable kernel modules to be
prepared for dynamically attached hardware. However, for
embedded systems, the hardware configuration is more sta-
ble and predictable. Therefore, we used localmodconfig,
with some manual overwrites, to enable only those drivers
that are necessary for each platform. Further, more elabo-
rate methods based on dynamic tracing could be used in the
future [21, 33]. Principle: Statically specialize software for
the combination of hard- and software.

3.3 Atomic System Reconfigurations and Updates
As already discussed, updates (C3) are a critical point in the
life cycle of an embedded system, especially if it is deployed
in an inaccessible environment. Therefore, we have to ensure
that the machine always remains in a recoverable state and
that updates cannot “brick” the device. Before we detail our
approach, we assess different update strategies for Linux
devices (see Tab. 1) in five dimensions: A complete strategy
can update all system components, and it is efficient if small
changes induce small updates. A reproducible strategy forces
the system to a defined state, and a safe one never leaves the
system in an unusable state. Reconfigurable strategies allow
for shared multi-mission systems.

Traditional Linux package managers (e.g., Debian’s dpkg)
adhere to the Linux file-system hierarchy (FHS) [34], where
every file has exactly one place in the file system. Therefore,
updates have to be in-place and destructive, which provokes
inconsistent intermediate states that can become permanent
on errors (e.g., power outage) [14]. Further, they are not re-
producible (--) as the outcome depends on the initial system
state, which becomes problematic if the gap between the
system and the upstream distribution grows larger [12].

To make over-the-air updates for mobile devices safe, cur-
rent systems, like Android [38], employ a recovery OS and/or
an A/B partitioning scheme. For this, the system is split into a
read-only image and a writable data partition. For the update,
a new read-only image is installed either by the recovery
OS, which is a minimal fall-back OS, or by the current OS

reUpNix: Reconfigurable and Updateable Embedded Systems LCTES ’23, June 18, 2023, Orlando, FL, USA

Table 1
boot-1
boot-2
system
data

Table 2
boot-2
boot-1
system
data

boot-1 (FAT32,ro)
vmlinuz 5.18

boot-2 (FAT32,ro)
vmlinuz 6.2

system (ext4,ro/rw)
Base System, Nix Store

data (ext4,rw)
User data, Logs,. . .

Table
2

(Copy)
Table

1
(Copy)

GPT
H.Backup

GPT
Header

M
BR

Header

Machine Config #1

Machine Config #2

m
achine

update

Figure 2. Partition layout with two Boot Slots

onto the inactive partition. While both methods are safe
(+), and A/B partitioning even ensures a fully-operational
device (++), they both require the transfer of whole system
images (efficiency: -). Further, A/B partitioning doubles the
storage requirement for the system image, which however
also provides limited potential for multi-mission scenarios.

Another potential road for embedded systems is aminimal
base system with a container runtime [11, 37]. By exchanging
containers, the system can be reconfigured for other mis-
sions, but there is no strategy to update the base system.
And while the update of one container is reproducible (◦),
embedded applications often cannot be fully containerized
(kernel modules), and thus still depend on the base system.

NixOS [14] and OSTree [2] use a merged-tree approach,
where multiple system profiles live in the same file system,
which enables transactional and reproducible system up-
dates. In contrast to NixOS, OSTree does not break the FHS
by using extensive hard linking to create a standard view
from the component repository. However, both methods
(S4) do not cover the bootloader and require a writable yet
failure-safe file system (e.g., by journaling).
reUpNix Updates With reUpNix, we combine the

merged-tree approach of NixOSwith A/B partitioning for the
bootloader, and use containers for third-party components.
For this, we will first look at the partition setup (Fig. 2).

First of all, reUpNix uses a single system plus one data par-
tition, which all MCs and SPs share. While the data partition
is generally writable, the system partition is only mounted
writable in a separate namespace for the update process. For
the boot partition, which contains the bootloader (configura-
tion), kernel(s), and initial ramdisk, we use A/B partitioning.
We thus maintain the reconfiguration and sharing proper-
ties of the merged-tree approach with the completeness and
robustness of A/B partitioning. Please note that updates are
prepared offline at the build host (covered in Sec. 3.4).
As already mentioned, NixOS does not cover the boot-

partition files as regular Nix components. For reUpNix, how-
ever, we derive them (C2) within the regular reproducible
and automated build process. To perform MC updates, the
update script creates a new FAT32 file system in partition
B, copies all files from the Nix store, and switches A and
B. Afterwards, the boot partition A contains kernels and
initial ramdisks for all SPs of the new MC. By not storing a
complete boot-partition image, we can reuse files between
MCs and reduce the size of updates.

To switch between the A/B boot partitions in a generic
way, without relying on features of any particular firmware
early-stage bootloader, we duplicate the GPT partition ta-
bles. Each table lists all partitions, but with a different boot
partition as the first / EFI-system / MBR-bootable partition.
By rewriting the GPT header, and if it matters for the device
also the MBR, we can switch between the boot partitions.
For this, we only have to overwrite the first two 512-byte
sectors of a flash medium, instead of rewriting the whole
GPT partition table. As flash storage can only write entire
flash pages (usually 4 KiB), they provide write atomicity on
this granularity [32]. Therefore, reUpNix’s boot-partition
switch is atomic on such devices.
In total, we perform these steps for an MC update: (1)

insert new components into the Nix store, (2) update the
inactive boot partition, (3) switch A and B partition tables, (4)
reboot to a new SP, and (5) remove unnecessary components
from the store. With this process, and under the assumption
that adding files to the system partition does not corrupt its
state, we ensure failure atomicity for the update process.
Besides MC updates, reUpNix also supports run-time re-

configurations by rebooting into a different SPs. At this point,
we decided to support only this clean-boot approach for sys-
tem reconfiguration, as dynamic run-time reconfigurations,
where services are stopped and started, is more risky and
does not support all reconfigurations (e.g., different kernels).
However, in future work, we want to look at safe no-reboot
reconfigurations as they promise shorter downtimes.
While we require that a MC’s default SP, which should

only contain a base system, is bootable, we can recover
from broken non-default SPs. For this, we use a hardware
watchdog and one-shot bootloader overrides, so that we can
try booting into other SPs without ever bringing the de-
vice into an unsafe state. We support this on UEFI (x86 and
Aarch64) systems with systemd-boot and U-Boot-based sys-
tems (Raspberry Pi and NXP i.MX 8M+). To support one-shot
boots with U-Boot, we create a temporary U-Boot environ-
ment that selects the intended boot entry, erases itself, and
then boots the SP. If booting fails, we fall back to an MC-
specific U-Boot environment that boots the default SP.

3.4 Transfer Size of Updates
With our reUpNix design methodology and our update/re-
configuration strategy in place, we now want to look closer
at step (1) and step (5) of our update mechanism. reUpNix
supports uni-directional updates, where an update archive
is prepared upfront and sent to the device without the neces-
sity for a back channel. In contrast to bi-directional update
methods (e.g., based on rsync), this is more suitable for high-
latency networks (e.g., satellites) and large device fleets.

As already mentioned, an update transitions a device from
the current MC to a new MC. For this, we have to install
the transitive dependency closure of the new MC to the
device (step 1) and remove those components that are only

LCTES ’23, June 18, 2023, Orlando, FL, USA Niklas Gollenstede, Ulf Kulau, and Christian Dietrich

L1 # Step (1): ____ Source(s) _______ ____ Destination File __________

L2 L /nix/../a5c0-numpy-1.20/arith.py /nix/../d221-numpy-1.24/artih.py

L3 C /nix/../bar 128-768 /nix/../foo 256 # reuse block

L4 B ${UP}/blocks 256-512 /nix/../foo 896 # new block

L5 P /nix/../bin/bash ${UP}/bspatch.1 /nix/../bin/bash # patch file

L6 # Step (5)

L7 R /nix/../a5c0-numpy-1.20 # remove component

Listing 1. reUpNix Update Commands

reachable from the old MC (step 5). With nix-copy-closure,
NixOS already comes with a standard method to transfer
the transitive closure to a different machine. However, this
method is bi-directional, and it always transfers complete
components, which further inflates update-transfer size (S2).
To make reUpNix suitable for embedded devices, we ex-

plore different update-compression methods that provide
small transfer sizes for whole MCs, while keeping the re-
quired resources for applying the update on the target device
in mind. Our lever for shrinking updates is that our target
device already has a Nix store that is populated with the
old MC. Our preparation results in an update script that the
vendor can transfer over a uni-directional connection.

Update Script Wedefine a custom format for the update
script, which interleaves commands and newly-introduced
data blocks, and which we compress with zstd. Due to the
interleaving, the update is streamable, and we do not need
to buffer it prior to its application. Only for binary patches
we require additional space for storing one patch. For easier
understanding, we present our example update (Lst. 1) as if
new blocks were extracted to ${UP} and referenced by name.
File Deduplication Instead of sending complete com-

ponents, we transfer only those files which do not yet exist
in the target device (see Fig. 3 a). For this, we can use the
deduplication feature of the Nix store to find files that only
exist in the new MC. On the technical level, we build up a
bi-directional inode–path mapping of the transitive closure
for both MCs. For a file that is already on the device, the
update script only creates a hard link (see Lst. 1 L2). As this
increases the inode’s reference count, we can delete the old,
now obsolete, file reference (L7).
Partial File Reuse However, as component addresses

are scattered throughout many files (S2), the file deduplica-
tion mechanism will find fewer equal files than it would on
other Linux distributions. Therefore, we want to reuse parts
of files that are already on the device to further drive down
the update size. For this, we explore two methods: global
block reuse and bsdiff [28, 29].
For global block reuse (see Fig. 3 b), we chunk all files of

the old MC into fixed-sized blocks and create a hash index
over those. On the non-duplicated files in the new MC, we
perform the same chunked hashing to find blocks that are
already on the device. After collapsing consecutive blocks
from the same source file, we extend the update script with
a copy block command (L3), which copies parts of the source
file (bar) to create parts of a new file (foo).

O N

=

(a) File Dedup.

O N

transfer!

=

̸=

̸=

=

(b) Blocks

O N

reuse!

̸=

=
Nix
Ref.

(c) Refs

O N
̸=

̸=

=

̸=

(d) Ref+Block

Figure 3. In-File Block Patterns to reconstruct a New file
from an Old file that is already on the target machine.

The scattered component address, which can occur at
any offset, pose both a challenge and an opportunity: If an
addresses change, they force the enclosing block to be trans-
ferred in the update. However, they are also visible anchor
points in the file to identify content that has shifted by non-
block–sized increments. Therefore, we refine our fixed-size
chunking: (1) We scan files for store references and split
them around those boundaries (see Fig. 3 c). (2) The resulting
segments can be further split and reused with the previously
described fixed chunking (see Fig. 3 d).

BSDiff We further explore the usage of bsdiff [28, 29]
to compress the transferred size. While we assume that the
build host has a large amount of memory, the target device’s
memory is often limited. Applying a binary patch, however,
requires enough memory to hold the old and the new data, as
well as the uncompressed patch. Therefore, it is not possible
to use bsdiff at the MC level, but we have to apply it at the
component or file level.

For bsdiff to create small patches, we have to invoke it on
pairs of similar artifacts (e.g., components, files, . . .), where
one of them already exists on the target while the other is
about to be installed. As finding the smallest possible patch
would require an exhaustive patch generation with every
existing artifact, we require a heuristic method to find similar
pairs. Usually, with a traditional package manager, we would
simply pair up the previous package version with the current
one. However, with Nix, the problem is more complex, as
(a) components are primarily hash addressed, (b) multiple
package versions can co-exist, and (c) the same definition
can be instantiated with different options. Therefore, there
is no unambiguous pairing.
We tackle this problem by matching subgraphs of the

retained dependency graph that are reachable from both
MC components. To avoid the NP-complete subgraph iso-
morphism problem, we further label the dependency edges
with the component’s derivation name,1 which, however,
can be ambiguous, and perform a heuristic match operation:
Initially, we merge both MC components into a pair node.
Recursively, we greedily pair components together if they are
reachable from an existing pair by a locally unambiguously-
labeled pair of edges. For unmatched components, we fall
back to file deduplication with optional block reuse.

1Nix includes a derivation name and a version string in the component path.
For example, for ...a14bf-glibc-2.6, we use glibc as the label.

reUpNix: Reconfigurable and Updateable Embedded Systems LCTES ’23, June 18, 2023, Orlando, FL, USA

Table 2. Overview of Base-System Storage Requirements
Disk Use [MiB] Nix Store

Boot System [MiB] ELF Sz. Comp. Files

x64 NixOS 18.2 1072 1023 47.44% 747 23042
reUpNix 14.1 141 134 74.49% 325 3567

Aarch64 NixOS 55.5 1092 1040 48.74% 751 24033
reUpNix 51.8 184 176 67.99% 323 3994

For matched components, we invoke bsdiff on determin-
istically created component archives, while for files we pair
those with the same intra-component path. We also support
block-based invocation of bsdiff: Within paired files, we
create binary patches of blocks with the same index, which,
if necessary, we re-align at hash-identical blocks. The bsdiff
patches receive their required compression with the update
script. In the update script, we invoke bspatch with a source
component/file/block, a patch, and the target component/-
file/block (L5).

4 Evaluation
For our evaluation, we compare reUpNix on two platforms:
(1) x64/AMD64 with UEFI boot and (2) Aarch64 with the U-
Boot bootloader on a Raspberry Pi 4. They represent typical
systems in the embedded area and future applications in
the New Space [16]. We will characterize the base systems,
investigate the costs of service integration, compare transfer-
size reduction mechanisms, and look at the reconfigure time.

4.1 Base System
First, we will compare the installation size of a standard
NixOS system to our minified reUpNix system on the two
evaluation platforms. For this, we build a base system with a
bash shell, a dropbear SSH server, the container infrastruc-
ture, and the ability to receive updates via network.
In Tab. 2, we compare the disk usage of the four base

systems and characterize their Nix store.With our systematic
minimization, we could reduce the overall installation size
(both partitions) for x64 by 86 percent and by 79 percent for
Aarch64. To achieve this, we eliminated more than half of all
components. The biggest contributor to the sharp decrease in
deployed files is the Linux kernel, where alone we removed
7160 files for Aarch64; mostly kernel modules and device-tree
files that are not required on our Raspberry Pi.

From the largest store components (see Tab. 4), we see that
language localization, which is not necessary on embedded
devices, inflates the NixOS base system. Further, we could
even remove nix-2.8.1, which contains the Nix package
manager, from both installations. This is only possible as all
changes to the on-device store are prepared off-device on a
separate build host and are injected via updates. Also, for
the Linux kernel, our device-specific tailorization is more
successful for x64 than for Aarch64, since localmodconfig
only removes modules, but the standard NixOS kernel for
the Raspberry Pi 4 enables many features statically.

Table 3. Storage Cost of Individual Services
OCI Image Additional Components

[MiB] Smallest Largest Δ NixOS Δ reUpNix

httpd 54.6 142.5 8.6 79.8
mariadb — 371.9 — 233.9 303.8
memcached 8.0 88.4 0.5 1.3
mongo — 668.3 — 167.6 205.8
mysql 436.2 510.1 404.9 580.7
nginx 23.9 139.2 19.1 24.1
node 162.4 967.9 50.0 139.1
postgres 209.5 366.2 38.3 168.9
python 49.3 900.5 23.1 23.1
rabbitmq 123.6 223.4 431.2 472.1
redis 28.3 114.8 5.5 5.5
registry — 23.5 — 28.3 29.7
traefik — 102.8 — 102.0 103.4
wordpress — 593.4 — 423.4 516.7

Another interesting case is extra-utils: Nix detects this
package sporadically as a retained dependency of the initial
ramdisk, which indeed contains the address of that com-
ponent but never uses it (an expected over-approximation).
However, the address is only discovered sporadically as the
initrd gets compressed, whereby, depending on the com-
pression result, the address becomes invisible to the depen-
dency scanner. Therefore, the Nix dependency scanner is
only sound if the component addresses are not opaque.

Summarized, reUpNix provides a minimized base system
that is able to execute OCI images and Nix services in isolated
Linux namespaces.

4.2 Size of Nix and OCI Services
Next, we will look at the integration of OCI images into
reUpNix. For this, we will compare the static storage costs
of OCI and Nix services, as well as the benefit of having file-
level deduplication of OCI files. As base for this comparison,
we selected the top-15 recommended x86 Docker images
from dockerhub.com and their variants.2
Nix Service vs. OCI image First, we look at the static
storage costs that are induced by a third-party supplied OCI
image in comparison to a Nix-native service, which can
reuse components also used by the base system (e.g., glibc).
For each service, Tab. 3 shows the largest and the smallest
Docker image, while five images only provide a single variant.
We also add the same services as native Nix packages to
both NixOS and reUpNix, to show the combined size of the
additional components that are not yet part of the base system.
For this comparison, we excluded the golang container, as it
only includes a compiler and no service-related binary.

We see that installing a service (except redis) on reUpNix
requires more additional components than on top of standard
NixOS, as fewer components are already part of reUpNix’s
small base system. For eight services, reUpNix requires less

2OCI Images: golang (1.19.0, dAba), httpd (2.4.54, dba), mariadb (10.8.3,
d), memcached (1.6.16, dba), mongo (5.0.10, d), mysql (8.0.30, dA), nginx
(1.23.1, da), node (18.7.0, dASba), postgres (14.5, dba), python (3.10.6, dASba),
rabbitmq (3.10.7, da), redis (7.0.4, dba), registry (2.8.1, d), traefik (2.8.3, d),
wordpress (6.0.1, d) Variants: default, Alternative, Slim, bullseye, alpine

https://dockerhub.com

LCTES ’23, June 18, 2023, Orlando, FL, USA Niklas Gollenstede, Ulf Kulau, and Christian Dietrich

Table 4. Largest Components. Deleted (×), minimized (↓).
x64/UEFI Aarch64

Top NixOS reUpNix NixOS reUpNix

1. × glibc-locales-2.34 214.8MiB extra-utils 15.4MiB × glibc-locales-2.34 214.8MiB ↓ linux-5.15.56 74.0MiB
2. ↓ linux-5.15.56 105.2MiB ↓ linux-5.15.56 14.5MiB ↓ linux-5.15.56 137.8MiB ↓ systemd-250.4 14.2MiB
3. × perl-5.34.1 52.7MiB ↓ systemd-250.4 13.6MiB × perl-5.34.1 52.5MiB ↓ glibc-2.34 8.1MiB
4. ↓ systemd-250.4 40.1MiB ↓ glibc-2.34 9.8MiB ↓ systemd-250.4 41.7MiB util-linux-minimal-2.37.4 6.4MiB
5. ↓ glibc-2.34 39.2MiB ↓ initrd-linux-5.15.56 6.7MiB × icu4c-71.1 35.7MiB ↓ initrd-linux-5.15.56 5.7MiB
6. × icu4c-71.1 36.0MiB gcc-11.3.0-lib 6.1MiB ↓ glibc-2.34 35.6MiB gcc-9.3.0-lib 5.5MiB
7. × icu4c-67.1 33.8MiB util-linux-minimal-2.37.4 6.1MiB × icu4c-67.1 33.5MiB shadow-4.11.1 3.9MiB
8. × spidermonkey-78.15.0 32.4MiB openssl-1.1.1q 4.0MiB × binutils-2.38 32.0MiB db-5.3.28 3.7MiB
9. × binutils-2.38 31.2MiB db-5.3.28 4.0MiB × spidermonkey-78.15.0 31.2MiB openssl-1.1.1q 3.7MiB
10. × nix-2.8.1 15.3MiB shadow-4.11.1 3.9MiB × nix-2.8.1 13.9MiB iproute2-5.17.0 3.5MiB

de
fau

lt alt slim

bu
llse

ye
alp

ine
0

25

50

75

100

Si
ze

 re
la

tiv
e

to
 U

nc
om

pr
es

se
d

[%
]

6.
0

Gi
B

4.
4

Gi
B

3.
4

Gi
B

5.
9

Gi
B

4.
3

Gi
B

3.
8

Gi
B

4.
5

Gi
B

3.
9

Gi
B

3.
2

Gi
B

3.
5

Gi
B

2.
1

Gi
B

1.
6

Gi
B

1.
0

Gi
B

0.
9

Gi
B

0.
9

Gi
B

Docker reUpNix

Uncompressed Shared Layers Shared Files

Figure 4. Combined Storage Cost of OCI Images

space than the smallest OCI image (green), which highlights
the potential benefit of a well-crafted Nix package. Of these,
the commonly used key-values stores redis and memcached
come with a particular small footprint and require only 20
resp. 17 percent of the smallest OCI image.
For four packages, the Nix service requires more space

than the largest OCI image (red). Due to many retained
dependencies in the NixOS package, RabbitMQ comes with
a tripled installation size. As we have seen with the base
system, though, Nix package can be systematically debloated
(see Sec. 3.2). Technically, there is no reason for a reUpNix
service to be larger than an OCI image.

File Deduplication vs. Layer Sharing With reUpNix,
we collapse the layers of OCI images and import them into
the Nix store, which results in file-level deduplication. To
measure the benefits of this approach over the usual layer-
reuse approach of Docker [26], we import multiple OCI im-
ages into the same Nix store, and compare its size to the
combined size of the deduplicated layers (see Fig. 4). Further,
as the Docker registry supports multiple variants per OCI
image, we compare different combinations of image variants.

When we co-locate all default images, we see a 22 percent
improvement over the already efficient layer-sharing. When
using the alternative variants (where available), the non-
shared layers become more diverse and can thus share fewer
files. With the slim variants instead, it reduces the uncom-
pressed size, but also largely removes shared files and layers,
thus reducing the efficiency of both sharing approaches.
For the Debian bullseye and the alpine bars, we subset

our 15 services to those that have a variant based on the

0

10

20

30

Re
m

ai
ni

ng
 Tr

an
sf

er
 S

ize
 [%

]

 3
1.

6
 2

.5
 8

.0
 1
3.

0
 1

.9

 2
.2

 0

.8
9

 0
.9

6
 1

.4

139.3 MiB

Base System

FD
FD+64

FD+4K
FD+R

FD+R+64
FD+R+4K

BSD(Comp)
FD+BSD(File)

FD+R+4K+BSD(Chunk)

 2
7.

3
 0

.4
2

 1
.4

 4

.6

 0
.4

1
 0

.7
8

 0
.1

2
 0

.1
9

 0
.1

6

107.8 MiB

Base w/o Kernel

 8
.0

 1

.8

 2
.7

 3

.2

 1
.8

 1

.9

 1
.2

 1

.3

1158.1 MiB

MQTT/Nix

 3
1.

5
 2

.5
 8

.0
 1
3.

0
 1

.9

 2
.2

 0

.9

 0
.9

6
 1

.4

139.4 MiB

MQTT/OCI

Update Libc

0

10

20

30 3
6.

1
 2

4.
0

 2
7.

4 3
4.

7
 2

3.
1

 2
6.

5
 1

0.
8

 1
1.

1
 1

6.
7

141.4 MiB

 3
0.

5
 1

5.
6 1
9.

4
 3

0.
0

 1
8.

0
 2

1.
1

 3
.6

 4

.5

 7
.0

109.8 MiB

 1
6.

3 1
1.

6
 1

2.
9

 1
6.

0 1
1.

6
 1

2.
7

 6
.5

 9

.6

800.5 MiB

 3
6.

1
 2

3.
9 2
7.

4 3
4.

7
 2

3.
1

 2
6.

6
 1

0.
8

 1
1.

1
 1

6.
6

141.4 MiB

75 Days

0

10

20

30

 3
4.

8
 2

3.
8

 2
5.

7
 2

0.
2

 1
6.

5
 1

7.
1

 7
.0

 1
1.

7
 1

6.
2

47.2 MiB

 2
9.

4
 1

4.
2

 1
5.

7 2
0.

7
 1

9.
3

 2
0.

1
 8

.4

 1
5.

7
 1

7.
6

30.6 MiB

 1
3.

9
 1

0.
4

 1
0.

6
 1

3.
9

 1
0.

5
 1

0.
6

 3
.2

 4

.4
 1

2.
4

129.6 MiB

 2
7.

2
 1

7.
7 2

6.
5

 2
7.

1
 1

7.
7 2

6.
5

 7
.8

 2

6.
7

149.5 MiB Version Update

Figure 5. Update-Transfer Compression. We deduplicate
files (FD), split at fixed blocks (64, 4K) and at Nix references
(R), and use bsdiff (BSD) at different granularities.

respective base image. For bullseye, where the large base im-
age imposes a significant sharing opportunity, both methods
reduce the on-disk overhead. Nevertheless, file-level dedu-
plication saves another 24 percent for bullseye. For Alpine,
where the common base image is already much more con-
densed, we can save only 8 percent, though that is still 1.81
times more than layer sharing achieves here.
Summarized, Nix services often require less disk space

than the smallest available OCI image. But even if the system
integrator uses a third-party OCI image with reUpNix, the
per-file deduplication within the Nix store allows for fine-
grained sharing between different unrelated containers.

4.3 Update-Transfer Size
To quantify the update-transfer size and compare our com-
pression strategies, we look at multiple MCs and apply mul-
tiple updates with different semantics (see Fig. 5). For this,
we focus on the x64 variant of reUpNix.

We apply our updates to empty reUpNix base systems,
without any installed services, and to systems with anMQTT

reUpNix: Reconfigurable and Updateable Embedded Systems LCTES ’23, June 18, 2023, Orlando, FL, USA

broker and a Zigbee-to-MQTT bridge,3 which mimics a typ-
ical wireless-sensor bridge. For the base systems, we look
at the complete base system and at the system excluding
its kernel and initrd. For the MQTT systems, we use the
same base system, with the NixOS package for Mosquitto
and Zigbee2MQTT added in one version, and the services’
publicly available OCI images added to the other.
Onto those four systems, we apply three different up-

dates: (1) We introduce a trivial change into the GNU C
library that changes its component address but leaves its
semantics untouched. (2) We apply an update worth 75 days
of NixOS package changes. (3) We update individual pack-
ages: systemd for the base variants; both Mosquitto and
Zigbee2MQTT for the MQTT variants.
Baseline For these system–update combinations, we

use the size of the changed components (white boxes in
Fig. 5) as our baseline, as the existing nix-copy-closure

mechanism would transfer exactly those. For the libc and
the 75-day update, this naive mechanism replaces (almost)
the whole base system (around 140MiB). Also, we see that
the MQTT system that is built only from NixOS packages
suffers from large update sizes (S2). Similar to the discussed
RabbitMQ package, the NixOS Mosquitto package is much
larger than the Mosquitto OCI image.
File Deduplication By removing duplicate files (FD),

we already improve the transfer size by at least 64 percent.
When updating the libc on the MQTT/Nix system, dedupli-
cation even reduces the update by 92 percent as the baseline
transfers many identical Javascript files (for Zigbee2MQTT).
Fixed- and Variable-Sized Chunking Next, we look

at the different chunking methods and compare small and
large blocks (64 bytes and 4K iB) as well as reference-splitting
(R). For these variants, we apply chunk deduplication only
after removing duplicated files from the update. From the
results, we make the following observations and conclusions:
(1) small chunks are better than large chunks, even though
their greater number could inflate the update script many
instructions. (2) reference-splitting alone is rarely better than
fixed-sized chunking; if used, it should be combined with
chunking. (3) chunking makes NixOS updates efficient, such
that small changes (libc) result in small updates.

BSDiff With bsdiff, we compare three variants: Either
we create a binary patch at the component level, at the file
level, or at the block level. First, we see that, for three updates,
bsdiff is unable to create patches at the component level –
it runs into memory corruption issues for too large objects.
However, in cases where we were able to derive an update,
the component-level binary patches yield the best results
and reduce the transfer size between 89.17 and 99.88 percent.

By reducing the granularity of bsdiff, we reduce its com-
plexity, but also remove its ability to reuse data. There-
fore, the FD+BSD(File) variant is less successful than the

3Mosquitto MQTT Broker v2.0.14, Zigbee2MQTT v1.25.0

0 1.92 9.78 14.01 24.79
Boot Time [s]

1.9 7.9 4.2 10.8

PowerOff RPi Firmw. U-Boot reUpNix

Figure 6. reUpNix Reconfigure Time by Reboot

component variant, but it often beats the block-based ap-
proaches. For the considerably-large 75-day update of the
MQTT/Nix update, it improves on the best block-reuse ap-
proach by another 44 percent. For the MQTT/Nix system, it
reduces the libc update from 1158MiB to 74.9MiB.
When reducing the bsdiff granularity further, down to

the block level, the compression rate decreases even more.
We do not consider this a viable option.

Summarized, reUpNix is able to considerable compress
the update-transfer size of NixOS-based systems, alleviating
S2. As compression methods, block-reuse with small chunks
and (component-)/file-level binary patches proved to be most
successful. We will discuss this further in the next section.

4.4 Reconfigure Time
As reUpNix switches between SPs by rebooting, we want to
quantify the time it takes to reboot into SPs. For this, we set
up a Raspberry Pi 4 two SPs, co-located on a micro-SD-card,
that store the two MQTT/Nix variants used for the Version
Update experiment from Sec. 4.3. We repeatedly reconfigure
the system from the old to the new SP, while timestamping
the serial output of the Pi. We thus mimic the actual down-
time induced by this update, as the patch application can be
done concurrently to the normal operation.
The average of the 20 reboots is broken down into indi-

vidual phases in Fig. 6. From the total reconfigure time of
24.8±0.08 s, reUpNix shutdown (8%) and bootup (43%) take
make up for only half of the time. The other half stems from
the firmware initialization (32%) and the boot loader (17%),
where only the latter depends on reUpNix as it loads the
kernel (1.98±0.0024 s) and the initrd (0.70±0.0005 s).
Overall, we see that reUpNix’s current clean-boot ap-

proach requires a significant time span. While this is accept-
able forMC updates, wewant to improve on this in the future
for reconfiguration. Here, the use of kexec() is a possible
path to avoid the bootloader and firmware latencies.

5 Discussion
We argue that reUpNix brings some unique features, like
minimized updates and multi-mission setups, to the embed-
ded Linux stack. Thereby, reUpNix alleviates the shortcom-
ings of NixOS for the embedded domain on the conceptual
and the technical level. Further, reUpNix, and its base Nix,
have more benefits and interesting aspects in this domain.
System-Update Compression As shown (Sec. 4.3),

bsdiff at the component level produced the smallest up-
dates, but also crashed on large components. Further, this

LCTES ’23, June 18, 2023, Orlando, FL, USA Niklas Gollenstede, Ulf Kulau, and Christian Dietrich

method also requires holding both components as well as
the uncompressed patch, which is usually larger than the
destination component, in memory. Therefore, this coarse-
grained method should only be applied for large embedded
systems with sufficient memory or when limiting its usage to
small components. For medium-ranged embedded systems,
we recommend the combination of file deduplication and file-
level binary patches, as it limits the resource consumption
during update application on the target.

For memory-scarce systems, we consider the block-reuse
method with small blocks the best option, as it provides small
updates but does not need to execute complex algorithms
on the target device. Combined with our streamable update
script format, this provides a good trade-off between transfer
size and on-device resource requirements.

Traceability By design, Nix-based systems already lean
towards being more reproducible, as we capture the com-
plete build and integration process within an executable
description, whose reproducibility can be validated by re-
execution. Further, we could use the whole methodological
toolbox of static analyses to connect deployed artifacts to
their Nix definitions. Such end-to-end traceability, from the
source-code line to the ELF section, would foster trust in
the build process and could help to identify update-induced
run-time anomalies.
Secure Boot With secure boot, the vendor establishes

an unbroken trust chain from the bootloader, over the kernel,
to the stored files. Often, embedded secure-boot chains use
the dm-verity kernel module, which ensures file-system
integrity by checking signatures on the disk-block level.
Though this avoids on-device key management, dm-verity
requires a read-only partition.
As this is incompatible with fine-grained updates, reUp-

Nix would require a different file-system integrity schema.
Nevertheless, since reUpNix treats files as immutable, this
is much simpler than for systems with destructive in-place
updates. One possible route we want to explore in the future
is to establish trusted-boot chains on component granularity
and on the retained dependency graph. Thereby, different
trusted boot chains could exist on the same device, one for
each system profile.

6 Related Work
Embedded Linux Toolchains Yocto Linux[24] is an au-
tomated build tool for embedded system images that uses
layered system composition, similar to OCI layers but at
build time. Buildroot has goals similar to Yocto’s, but uses a
simpler, more opinionated structure and Kconfig-backend
configuration schema. Both toolchains do not support multi-
mission setups and require an external update mechanism,
such as those discussed in Sec. 3.3 and Tab. 1.
Similar to SkiffOS [37], which is an embedded container

runtime based on Buildroot, we also argue that the system

design and update mechanism must go hand-in-hand. How-
ever, by relying only on OCI containers, SkiffOS does not
allow for tightly-integrated lightweight services, which re-
UpNix provides with Nix services. Nevertheless, by having
the ability to integrate OCI containers, reUpNix tackles the
general criticism with NixOS that it breaks the FHS [37].

Embedded Updates Dong et.al. [15] reduce the update
size of embedded sensor nodes bymanipulating the firmware
binary for higher similarity with the old on-device image.
Feedback Linking [39] is a similar approach but at the linker
level. Bogdan et.al. [7] highlight the importance of the update
size for automotive ECUs due to the limited CAN bandwidth,
and they propose reusing the old firmware to reduce the
update size. In contrast, reUpNix leaves files untouched, and
provides reproducible updates of full Linux systems and a
safe update path.

Courgette [4] is used to shrink differential Chrome updates
by applying bsdiff [29] on the disassembled binary. In fu-
ture work, we want to explore the usage of Courgette for
reUpNix, even though it introduces a (re-)assembler as an
additional run-time dependency.

Generalization from NixOS Guix [9] is another func-
tional packagemanager for Linux systems that is very similar
to Nix, with Guix System as its Linux distribution. In con-
trast to Nix, which uses different languages (Nix, bash) for
composition and build instructions, Guix uses Scheme as
an embedded domain-specific language for both. Also, Guix
includes a method to authenticate new Git revisions [10]
using signed commits. Nevertheless, as reUpNix does not
depend on Nix-language specifics, our design methodology
and update path could also be executed with Guix.

7 Conclusion
In this paper, we presented reUpNix, a NixOS-based method-
ology to describe and derive embedded Linux software stacks.
reUpNix is able to integrate third-party OCI images, provides
automatable and reproducible system images, and allows for
transactional uni-directional updates. Further, reUpNix al-
lows for multi-mission setups with dynamic reconfiguration
via system reboots. Compared to NixOS, reUpNix has a 86
percent smaller base system on x64, requires significantly
smaller updates (up to 99.88%), and requires less disk space
to store multiple OCI images (up to -24%). Overall, reUpNix
brings the benefits of Nix(OS) to embedded Linux systems
while we ease the existing shortcomings of Nix. reUpNix is
publicly available [18].

Acknowledgments
We thank our anonymous reviewers for their work. This
work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 468988364, 501887536.
Further, some motivation and parts of the content were pre-
pared in the context of the AuRelia project.

reUpNix: Reconfigurable and Updateable Embedded Systems LCTES ’23, June 18, 2023, Orlando, FL, USA

References
[1] [n. d.]. Alpine Linux. https://alpinelinux.org/
[2] [n. d.]. OSTree – Git for operating system binaries. https://ostreedev.

github.io/ostree/
[3] 2020. SpaceX: We’ve launched 32,000 Linux computers into space for Star-

link internet. https://www.zdnet.com/article/spacex-weve-launched-
32000-linux-computers-into-space-for-starlink-internet/

[4] Stephen Adams. 2009. Courgette. https://www.chromium.org/
developers/design-documents/software-updates-courgette/

[5] Stefano Babic. 2021. SWUpdate: software update for embedded system.
https://swupdate.org

[6] David Blackman. 2000. Debian Package Management, Part 1: A User’s
Guide. Linux Journal 2000, 80es (2000), 12–es. https://doi.org/10.5555/
364352.364661

[7] Daniel Bogdan, Razvan Bogdan, and Mircea Popa. 2016. Delta flash-
ing of an ECU in the automotive industry. In 2016 IEEE 11th Interna-
tional Symposium on Applied Computational Intelligence and Informat-
ics (SACI). 503–508. https://doi.org/10.1109/SACI.2016.7507429

[8] Bruno Bzeznik, Oliver Henriot, Valentin Reis, Olivier Richard, and
Laure Tavard. 2017. Nix as HPC Package Management System. In
Proceedings of the Fourth International Workshop on HPC User Sup-
port Tools (Denver, CO, USA) (HUST’17). Association for Comput-
ing Machinery, New York, NY, USA, Article 4, 6 pages. https:
//doi.org/10.1145/3152493.3152556

[9] Ludovic Courtès. 2013. Functional Package Management with Guix.
arXiv. https://doi.org/10.48550/ARXIV.1305.4584

[10] Ludovic Courtès. 2023. Building a Secure Software Supply Chain
with GNU Guix. 7, 1 (2023). https://doi.org/10.22152/programming-
journal.org/2023/7/1

[11] Alison Davis. 2016. Introducing resinOS 2.0. https://www.balena.io/
blog/introducing-resinos/ Accessed 2022-08-20.

[12] Roberto Di Cosmo, Stefano Zacchiroli, and Paulo Trezentos. 2008.
Package Upgrades in FOSS Distributions: Details and Challenges. In
Proceedings of the 1st international workshop on hot topics in software
upgrades. 1–5. https://doi.org/10.1145/1490283.1490292

[13] Eelco Dolstra, Merijn De Jonge, Eelco Visser, et al. 2004. Nix: A Safe
and Policy-Free System for Software Deployment. In Proceedings of
LISA ’04: Eighteenth Systems Administration Conference, Vol. 4. 79–
92. https://www.usenix.org/event/lisa04/tech/full_papers/dolstra/
dolstra_html/

[14] Eelco Dolstra and Andres Löh. 2008. NixOS: A Purely Functional
Linux Distribution. In ACM SIGPLAN international conference on Func-
tional programming (ICFP). 367–378. https://doi.org/10.1145/1411204.
1411255

[15] Wei Dong, Chun Chen, Jiajun Bu, and Wen Liu. 2014. Optimizing Re-
locatable Code for Efficient Software Update in Networked Embedded
Systems. ACM Trans. Sen. Netw. 11, 2, Article 22 (jul 2014), 34 pages.
https://doi.org/10.1145/2629479

[16] Teledyne e2v Semiconductors. 2023. Radiation Tolerant Quad ARM
Cortex A72. https://semiconductors.teledyneimaging.com/en/
products/processors-and-processing-modules/ls1046-space/

[17] EETimes, Aspencore. 2019. 2019 Embedded Markets Study.
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_
Embedded_2019_Embedded_Markets_Study.pdf

[18] Niklas Gollenstede and Christian Dietrich. 2023. reUpNix: Reconfig-
urable and Updateable Embedded Systems – https://github.com/ tuhhosg/
reupnix. https://doi.org/10.5281/zenodo.7929610

[19] Matthew Kenigsberg. 2021. A Performance and Storage Evaluation of
Lightweight Containerization with NixOS. Master’s thesis. Vanderbilt
University. https://ir.vanderbilt.edu/bitstream/handle/1803/16648/
KENIGSBERG-THESIS-2021.pdf

[20] Markus Kowalewski and Phillip Seeber. 2022. Sustainable packag-
ing of quantum chemistry software with the Nix package manager.

International Journal of Quantum Chemistry 122, 9 (2022), e26872.
https://doi.org/10.1002/qua.26872

[21] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth,
Valentin Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat,
Daniel Lohmann, and Rüdiger Kapitza. 2013. Attack Surface Metrics
and Automated Compile-Time OS Kernel Tailoring. In Proceedings of
the 20th Network and Distributed Systems Security Symposium. The
Internet Society. https://www.ndss-symposium.org/ndss2013/attack-
surface-metrics-and-automated-compile-time-os-kernel-tailoring

[22] Chris Lamb and Stefano Zacchiroli. 2022. Reproducible Builds: Increas-
ing the Integrity of Software Supply Chains. IEEE Software 39, 2 (2022),
62–70. https://doi.org/10.1109/MS.2021.3073045

[23] Hannu Leppinen. 2017. Current Use of Linux in Spacecraft Flight
Software. IEEE Aerospace and Electronic Systems Magazine 32, 10
(2017), 4–13. https://doi.org/10.1109/MAES.2017.160182

[24] Linux Foundation. [n. d.]. Yocto Project. https://www.yoctoproject.org
[25] Linux Foundation. 2021. OCI Image Format Specification v1.0. https:

//github.com/opencontainers/image-spec/blob/main/spec.md
[26] Dirk Merkel et al. 2014. Docker: lightweight linux containers for

consistent development and deployment. Linux Journal 239, 2 (2014),
2. https://doi.org/10.5555/2600239.2600241

[27] Josefine Nittler and Mattias Ahlsén. 2021. Key components of building
customer trust in the space industry: An investigation of the future of
satellite applications.

[28] Colin Percival. 2003. Naive Differences of Executable Code. Draft Paper,
http://www.daemonology.net/bsdiff (2003). http://www.daemonology.
net/papers/bsdiff.pdf

[29] Colin Percival. 2006. Matching with mismatches and assorted applica-
tions. Ph. D. Dissertation. University of Oxford. https://ora.ox.ac.uk/
objects/uuid:4f0d53cc-fb9f-4246-a835-3c8734eba735

[30] Lennart Poettering et al. 2010. System and Service Manager. https:
//systemd.io/

[31] J. Praks, M. Rizwan Mughal, R. Vainio, P. Janhunen, J. Envall, P.
Oleynik, A. Näsilä, H. Leppinen, P. Niemelä, A. Slavinskis, J. Gieseler,
P. Toivanen, T. Tikka, T. Peltola, A. Bosser, G. Schwarzkopf, N. Jo-
vanovic, B. Riwanto, A. Kestilä, A. Punkkinen, R. Punkkinen, H.-
P. Hedman, T. Säntti, J.-O. Lill, J.M.K. Slotte, H. Kettunen, and A.
Virtanen. 2021. Aalto-1, multi-payload CubeSat: Design, integra-
tion and launch. Acta Astronautica 187 (2021), 370–383. https:
//doi.org/10.1016/j.actaastro.2020.11.042

[32] Hongwei Qin, Dan Feng, Wei Tong, Yutong Zhao, Sheng Qiu, Fei
Liu, and Shu Li. 2021. Better atomic writes by exposing the flash
out-of-band area to file systems. In Proceedings of the 22nd ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers, and
Tools for Embedded Systems. 12–23. https://doi.org/10.1145/3461648.
3463843

[33] Andreas Ruprecht, Bernhard Heinloth, and Daniel Lohmann. 2014.
Automatic Feature Selection in Large-Scale System-Software Product
Lines. In Proceedings of the 13th International Conference on Generative
Programming and Component Engineering (GPCE ’14), Matthew Flatt
(Ed.). ACM Press, New York, NY, USA, 39–48. https://doi.org/10.1145/
2658761.2658767

[34] Rusty Russell, Daniel Quinlan, Christopher Yeoh, and Contributors.
2015. Filesystem Hierarchy Standard, Version 3.0. Technical Report. The
Linux Foundation. https://refspecs.linuxfoundation.org/FHS_3.0/fhs-
3.0.pdf

[35] Chris Simmonds. [n. d.]. mender.io – Open source over-the-air software
updates for Linux devices. https://mender.io/

[36] IBM Space. 2021. A Ground Breaking Cubesat Mission: ENDURANCE.
https://endurancein.space/

[37] Christian Stewart. 2021. SkiffOS: Minimal Cross-compiled Linux for
Embedded Containers. https://doi.org/10.48550/arXiv.2104.00048

https://alpinelinux.org/
https://ostreedev.github.io/ostree/
https://ostreedev.github.io/ostree/
https://www.zdnet.com/article/spacex-weve-launched-32000-linux-computers-into-space-for-starlink-internet/
https://www.zdnet.com/article/spacex-weve-launched-32000-linux-computers-into-space-for-starlink-internet/
https://www.chromium.org/developers/design-documents/software-updates-courgette/
https://www.chromium.org/developers/design-documents/software-updates-courgette/
https://swupdate.org
https://doi.org/10.5555/364352.364661
https://doi.org/10.5555/364352.364661
https://doi.org/10.1109/SACI.2016.7507429
https://doi.org/10.1145/3152493.3152556
https://doi.org/10.1145/3152493.3152556
https://doi.org/10.48550/ARXIV.1305.4584
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://www.balena.io/blog/introducing-resinos/
https://www.balena.io/blog/introducing-resinos/
https://doi.org/10.1145/1490283.1490292
https://www.usenix.org/event/lisa04/tech/full_papers/dolstra/dolstra_html/
https://www.usenix.org/event/lisa04/tech/full_papers/dolstra/dolstra_html/
https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1145/2629479
https://semiconductors.teledyneimaging.com/en/products/processors-and-processing-modules/ls1046-space/
https://semiconductors.teledyneimaging.com/en/products/processors-and-processing-modules/ls1046-space/
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://github.com/tuhhosg/reupnix
https://github.com/tuhhosg/reupnix
https://doi.org/10.5281/zenodo.7929610
https://ir.vanderbilt.edu/bitstream/handle/1803/16648/KENIGSBERG-THESIS-2021.pdf
https://ir.vanderbilt.edu/bitstream/handle/1803/16648/KENIGSBERG-THESIS-2021.pdf
https://doi.org/10.1002/qua.26872
https://www.ndss-symposium.org/ndss2013/attack-surface-metrics-and-automated-compile-time-os-kernel-tailoring
https://www.ndss-symposium.org/ndss2013/attack-surface-metrics-and-automated-compile-time-os-kernel-tailoring
https://doi.org/10.1109/MS.2021.3073045
https://doi.org/10.1109/MAES.2017.160182
https://www.yoctoproject.org
https://github.com/opencontainers/image-spec/blob/main/spec.md
https://github.com/opencontainers/image-spec/blob/main/spec.md
https://doi.org/10.5555/2600239.2600241
http://www.daemonology.net/papers/bsdiff.pdf
http://www.daemonology.net/papers/bsdiff.pdf
https://ora.ox.ac.uk/objects/uuid:4f0d53cc-fb9f-4246-a835-3c8734eba735
https://ora.ox.ac.uk/objects/uuid:4f0d53cc-fb9f-4246-a835-3c8734eba735
https://systemd.io/
https://systemd.io/
https://doi.org/10.1016/j.actaastro.2020.11.042
https://doi.org/10.1016/j.actaastro.2020.11.042
https://doi.org/10.1145/3461648.3463843
https://doi.org/10.1145/3461648.3463843
https://doi.org/10.1145/2658761.2658767
https://doi.org/10.1145/2658761.2658767
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
https://mender.io/
https://endurancein.space/
https://doi.org/10.48550/arXiv.2104.00048

LCTES ’23, June 18, 2023, Orlando, FL, USA Niklas Gollenstede, Ulf Kulau, and Christian Dietrich

[38] Chris Stirrat. 2020. The Evolution of Android OTA: A/B Updates. esper.
https://blog.esper.io/the-evolution-of-android-ota-updates/ Accessed
2022-08-12.

[39] Carl von Platen and Johan Eker. 2006. Feedback Linking: Optimiz-
ing Object Code Layout for Updates. In Proceedings of the 2006 ACM
SIGPLAN/SIGBED Conference on Language, Compilers, and Tool Sup-
port for Embedded Systems (Ottawa, Ontario, Canada) (LCTES ’06).

Association for Computing Machinery, New York, NY, USA, 2–11.
https://doi.org/10.1145/1134650.1134653

[40] Li Wang, Shuaijun Liu, Weidong Wang, and Zhiyan Fan. 2020. Dy-
namic Uplink Transmission Scheduling for Satellite Internet of Things
Applications. China Communications 17, 10 (2020), 241–248. https:
//doi.org/10.23919/JCC.2020.10.018

Received 2023-03-16; accepted 2023-04-21

https://blog.esper.io/the-evolution-of-android-ota-updates/
https://doi.org/10.1145/1134650.1134653
https://doi.org/10.23919/JCC.2020.10.018
https://doi.org/10.23919/JCC.2020.10.018

	Abstract
	1 Introduction
	2 Nix and NixOS
	3 reUpNix – A NixOS-Based Design Methodology for Embedded Systems
	3.1 Machine-, System-, and Service Configurations
	3.2 Size Reduction of the Base System
	3.3 Atomic System Reconfigurations and Updates
	3.4 Transfer Size of Updates

	4 Evaluation
	4.1 Base System
	4.2 Size of Nix and OCI Services
	4.3 Update-Transfer Size
	4.4 Reconfigure Time

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

