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Resilience Assessment by Fault-Injection

How susceptible is my software to soft errors (bit-�ips)?

Radiation Experiments: realistic but expensive/slow.
HAFI/FPGA: systematic, but requires specialized FPGA pool
Simulation-Assisted FI: systematic, scales out, efficient for ISA-level

SAFI: Required Tooling and Challenges

Fault Planning
Simulator Platform
Campaign Manager
Result Analysis

Accelerating HW Development (RISC-V)
Specialized ISA extensions (for resilience)
Same Behavior? Simulator ↔ Real Hardware

Our Approach

Derive SAFI simulator from formal ISA-level CPU
Combine with existing FI toolchain (FAIL*)
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SailFAIL: Overview

SFail Sail Compiler

RISC-V
Sail Model

CHERI RISC-V
Sail Model

AVR
Sail Model

C Emulator

Other Sail Products
Prover Definitions (Coq, Hol4,
Isabelle), Symbolic Evaluation,
Concurrency Model,. . .

Introduced
Modified

FAIL*
Sail

Fail Library

Program(s)-under-Test
C Source

IA-32 RV32I RV64I AVR
Compile
Binaries
Execute

Golden Run
Trace(s)

Trace Analysis
Prune & Plan

DB

FI Campaign

Combine existing tools:
FAIL*: SAFI toolchain that supports multiple backends (Bochs, Gem5)

golden-run recording, fault planning, campaign management

Sail: Language to describe ISA-level semantics; many models (RISC-V)
Ships with a “model→C” emulator compiler
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Sail Models

SFailSail CompilerISA Model C Emulator Fail Library

register PC : bits(22)
register nPC : bits(22)
register SP : bits(16)

function clause decode 0b1101 @ (offset : bits(12))
= AVR_RCALL(offset)

function clause execute AVR_RCALL(offset) = {
write_dmem(SP, nPC);
SP = SP - 2;
nPC = nPC + (offset * 2)

}

Sail: Modeling Language for ISA semantics

Pattern matching, dependent typing, scattered definitions
Definitions for model checkers, symbolic executions, and a C emulator
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SAFI Platform

SFailSail CompilerISA Model C Emulator Fail Library

SAFI platforms require emulator hooks
Observation: register/memory accesses, breakpoints, traps, interrupts
Control: start, stop, save/restore, forward execution
Injection: Modify the volatile state (memory and registers)

Our Approach: Hooks and Automated Modi�cations
(A) Insert high-level semantic callbacks into the model
(B) Model-independent state save/restore and access mechanisms
(C) Generated emulator traces register accesses

Bit-precise register access
Modified compiler inserts tracing for register accesses
Allows for precise bit-field access tracking

⇒ Fibonacci(500, AVR): 9.42 · 105 inj. ⇒ 7.9 · 105 inj. (-16.17 %)
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SailFAIL: Simulation Performance
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Intel Xeon Gold 6262 CPU with 2.10 GHz
Sail emulators are slower than hand-crafted emulators
Checkpoint save/restore: SailFail RISC-V (24 ms) vs. Bochs: 540 ms
Register tracing is rather slow, but is required only once
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Case Study: Bubblesort on (CHERI) RISC-V

CHERI: Hardware-Assisted User-Space Capability

In a nutshell: User-controlled, HW-enforced unforgeable fat pointers
Pointers are wider but accesses are more restricted
Question: Are CHERI programs more or less susceptible to soft errors?

With SailFAIL: Derive six FI platforms from two Sail models

32-bit/64-bit RISC-V with and without CHERI extension
Additional Variant: Parity-Checked CHERI capabilities

Three Bubblesort Variants

Static array, single-linked list, double-linked List.
Same Algorithm, same data, different capability granularity.

Uniform memory FI, full FS coverage, weighted absolute SDCs
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Case-Study: Results
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CHERI RISC-V + Parity

CHERI is less robust with coarse-grained capabilities
32 → 64 bit: Robustness is not halved
Parity-Checking: Improves SDC rate by up to 12 percent.
Double-Linked: RISC-V suffers, CHERI RISC-V benefits
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Conclusion

SAFI requires simulator platform

Hard to obtain, maintain, and to get correct
Custom ISA Extensions require adapted tool chain

SailFAIL: Derive platforms from formal Sail Models

Automatically introduce register access tracing
Bit-precise tracing and pruning of CPU registers
Five new backends for FAIL*

Case-Study: Bubblesort on (CHERI-) RISC-V

CHERI: larger attack surface, but sometimes fosters robustness
Capabilities should contain a parity bit
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Bit-Precise Def-Use Pruning
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Standard Fault Planing Technique: Def-Use Pruning

Partition fault space into equivalence intervals
One FI per interval that ends in a use/read (green)

Better Pruning with Bit-Precise Access Tracing

Register bits are manipulated independently (e.g., CSRs)
Partition only if bit is actually accessed

AVR: CRC32 over �rst 500 Fibonacci numbers

SREG: 1-bit access: 96.4 % instructions, 2-bit access: 3.6%
9.42 · 105 injections ⇒ 7.9 · 105 injections (-16.17 %)
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