
Operating
System
Group

SailFAIL: Model-Derived Simulation-Assisted ISA-Level
Fault-Injection Plattforms

SAFECOMP 2022

Christian Dietrich, Malte Bargholz, Yannick Loeck, Marcel Budoj,

Luca Nedaskowskij, Daniel Lohmann

September 7, 2022

Soft Errors are a Problem

cd SailFAIL � Motivation 2/13

Soft Errors are a Problem

cd SailFAIL � Motivation 2/13

Soft Errors are a Problem

cd SailFAIL � Motivation 2/13

Resilience Assessment by Fault-Injection

How susceptible is my software to soft errors (bit-�ips)?

Radiation Experiments: realistic but expensive/slow.
HAFI/FPGA: systematic, but requires specialized FPGA pool
Simulation-Assisted FI: systematic, scales out, efficient for ISA-level

SAFI: Required Tooling and Challenges

Fault Planning
Simulator Platform
Campaign Manager
Result Analysis

Accelerating HW Development (RISC-V)
Specialized ISA extensions (for resilience)
Same Behavior? Simulator ↔ Real Hardware

Our Approach

Derive SAFI simulator from formal ISA-level CPU
Combine with existing FI toolchain (FAIL*)

cd SailFAIL � Motivation 3/13

Resilience Assessment by Fault-Injection

How susceptible is my software to soft errors (bit-�ips)?

Radiation Experiments: realistic but expensive/slow.
HAFI/FPGA: systematic, but requires specialized FPGA pool
Simulation-Assisted FI: systematic, scales out, efficient for ISA-level

SAFI: Required Tooling and Challenges

Fault Planning
Simulator Platform
Campaign Manager
Result Analysis

Accelerating HW Development (RISC-V)
Specialized ISA extensions (for resilience)
Same Behavior? Simulator ↔ Real Hardware

Our Approach

Derive SAFI simulator from formal ISA-level CPU
Combine with existing FI toolchain (FAIL*)

cd SailFAIL � Motivation 3/13

Resilience Assessment by Fault-Injection

How susceptible is my software to soft errors (bit-�ips)?

Radiation Experiments: realistic but expensive/slow.
HAFI/FPGA: systematic, but requires specialized FPGA pool
Simulation-Assisted FI: systematic, scales out, efficient for ISA-level

SAFI: Required Tooling and Challenges

Fault Planning
Simulator Platform
Campaign Manager
Result Analysis

Accelerating HW Development (RISC-V)
Specialized ISA extensions (for resilience)
Same Behavior? Simulator ↔ Real Hardware

Our Approach

Derive SAFI simulator from formal ISA-level CPU
Combine with existing FI toolchain (FAIL*)

cd SailFAIL � Motivation 3/13

Overview

Motivation

SailFAIL: Model-Derived Fault Injectors

Case-Study: CHERI RISC-V

Conclusion

cd SailFAIL � Motivation 4/13

SailFAIL: Overview

SFail Sail Compiler

RISC-V
Sail Model

CHERI RISC-V
Sail Model

AVR
Sail Model

C Emulator

Other Sail Products
Prover Definitions (Coq, Hol4,
Isabelle), Symbolic Evaluation,
Concurrency Model,. . .

Introduced
Modified

FAIL*
Sail

Fail Library

Program(s)-under-Test
C Source

IA-32 RV32I RV64I AVR
Compile
Binaries
Execute

Golden Run
Trace(s)

Trace Analysis
Prune & Plan

DB

FI Campaign

Combine existing tools:
FAIL*: SAFI toolchain that supports multiple backends (Bochs, Gem5)

golden-run recording, fault planning, campaign management

Sail: Language to describe ISA-level semantics; many models (RISC-V)
Ships with a “model→C” emulator compiler

cd SailFAIL � Motivation 5/13

Sail Models

SFailSail CompilerISA Model C Emulator Fail Library

register PC : bits(22)
register nPC : bits(22)
register SP : bits(16)

function clause decode 0b1101 @ (offset : bits(12))
= AVR_RCALL(offset)

function clause execute AVR_RCALL(offset) = {
write_dmem(SP, nPC);
SP = SP - 2;
nPC = nPC + (offset * 2)

}

Sail: Modeling Language for ISA semantics

Pattern matching, dependent typing, scattered definitions
Definitions for model checkers, symbolic executions, and a C emulator

cd SailFAIL � Motivation 6/13

SAFI Platform

SFailSail CompilerISA Model C Emulator Fail Library

SAFI platforms require emulator hooks
Observation: register/memory accesses, breakpoints, traps, interrupts
Control: start, stop, save/restore, forward execution
Injection: Modify the volatile state (memory and registers)

Our Approach: Hooks and Automated Modi�cations
(A) Insert high-level semantic callbacks into the model
(B) Model-independent state save/restore and access mechanisms
(C) Generated emulator traces register accesses

Bit-precise register access
Modified compiler inserts tracing for register accesses
Allows for precise bit-field access tracking

⇒ Fibonacci(500, AVR): 9.42 · 105 inj. ⇒ 7.9 · 105 inj. (-16.17 %)

cd SailFAIL � Motivation 7/13

SAFI Platform

SFailSail CompilerISA Model C Emulator Fail Library

SAFI platforms require emulator hooks
Observation: register/memory accesses, breakpoints, traps, interrupts
Control: start, stop, save/restore, forward execution
Injection: Modify the volatile state (memory and registers)

Our Approach: Hooks and Automated Modi�cations
(A) Insert high-level semantic callbacks into the model
(B) Model-independent state save/restore and access mechanisms
(C) Generated emulator traces register accesses

Bit-precise register access
Modified compiler inserts tracing for register accesses
Allows for precise bit-field access tracking

⇒ Fibonacci(500, AVR): 9.42 · 105 inj. ⇒ 7.9 · 105 inj. (-16.17 %)

cd SailFAIL � Motivation 7/13

SailFAIL: Simulation Performance

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Instructions per Second [MHz]

SailFAIL + RegTrace
(AVR)

SailFAIL
(AVR)

SailFAIL + RegTrace
 (RISC-V 32)

SailFAIL
 (RISC-V 32)

Spike
(RISC-V 32)

FailBochs
(IA-32)

FA
IL

* B
ac

ke
nd

 0.0232 MHz

 0.327 MHz

 0.0112 MHz

 0.146 MHz

 1.17 MHz

 1.16 MHz

Intel Xeon Gold 6262 CPU with 2.10 GHz
Sail emulators are slower than hand-crafted emulators
Checkpoint save/restore: SailFail RISC-V (24 ms) vs. Bochs: 540 ms
Register tracing is rather slow, but is required only once

cd SailFAIL � Motivation 8/13

Overview

Motivation

SailFAIL: Model-Derived Fault Injectors

Case-Study: CHERI RISC-V

Conclusion

cd SailFAIL � Motivation 9/13

Case Study: Bubblesort on (CHERI) RISC-V

CHERI: Hardware-Assisted User-Space Capability

In a nutshell: User-controlled, HW-enforced unforgeable fat pointers
Pointers are wider but accesses are more restricted
Question: Are CHERI programs more or less susceptible to soft errors?

With SailFAIL: Derive six FI platforms from two Sail models

32-bit/64-bit RISC-V with and without CHERI extension
Additional Variant: Parity-Checked CHERI capabilities

Three Bubblesort Variants

Static array, single-linked list, double-linked List.
Same Algorithm, same data, different capability granularity.

Uniform memory FI, full FS coverage, weighted absolute SDCs

cd SailFAIL � Motivation 10/13

Case Study: Bubblesort on (CHERI) RISC-V

CHERI: Hardware-Assisted User-Space Capability

In a nutshell: User-controlled, HW-enforced unforgeable fat pointers
Pointers are wider but accesses are more restricted
Question: Are CHERI programs more or less susceptible to soft errors?

With SailFAIL: Derive six FI platforms from two Sail models

32-bit/64-bit RISC-V with and without CHERI extension
Additional Variant: Parity-Checked CHERI capabilities

Three Bubblesort Variants

Static array, single-linked list, double-linked List.
Same Algorithm, same data, different capability granularity.

Uniform memory FI, full FS coverage, weighted absolute SDCs

cd SailFAIL � Motivation 10/13

Case-Study: Results

St
at

ic
(3

2
Bi

t)

Si
ng

le
(3

2
Bi

t)

D
ou

bl
e

(3
2

Bi
t)

St
at

ic
(6

4
Bi

t)

Si
ng

le
(6

4
Bi

t)

D
ou

bl
e

(6
4

Bi
t)

0

100000

200000

300000

400000

500000

600000
SD

C
 C

ou
nt

RISC-V
CHERI RISC-V
CHERI RISC-V + Parity

CHERI is less robust with coarse-grained capabilities
32 → 64 bit: Robustness is not halved
Parity-Checking: Improves SDC rate by up to 12 percent.
Double-Linked: RISC-V suffers, CHERI RISC-V benefits

cd SailFAIL � Motivation 11/13

Overview

Motivation

SailFAIL: Model-Derived Fault Injectors

Case-Study: CHERI RISC-V

Conclusion

cd SailFAIL � Motivation 12/13

Conclusion

SAFI requires simulator platform

Hard to obtain, maintain, and to get correct
Custom ISA Extensions require adapted tool chain

SailFAIL: Derive platforms from formal Sail Models

Automatically introduce register access tracing
Bit-precise tracing and pruning of CPU registers
Five new backends for FAIL*

Case-Study: Bubblesort on (CHERI-) RISC-V

CHERI: larger attack surface, but sometimes fosters robustness
Capabilities should contain a parity bit

cd SailFAIL � Motivation 13/13

Bit-Precise Def-Use Pruning

0 1 2 3 4 5 6 7 8 9

0
1
2
3

R,0010

W,0011

R,0110

W,1010

R,1001

W,0100

W,0010 R,0110

SR
EG

t

Standard Fault Planing Technique: Def-Use Pruning

Partition fault space into equivalence intervals
One FI per interval that ends in a use/read (green)

Better Pruning with Bit-Precise Access Tracing

Register bits are manipulated independently (e.g., CSRs)
Partition only if bit is actually accessed

AVR: CRC32 over �rst 500 Fibonacci numbers

SREG: 1-bit access: 96.4 % instructions, 2-bit access: 3.6%
9.42 · 105 injections ⇒ 7.9 · 105 injections (-16.17 %)

cd SailFAIL � Motivation 14/13

Bit-Precise Def-Use Pruning

0 1 2 3 4 5 6 7 8 9

0
1
2
3

R,0010

W,0011

R,0110

W,1010

R,1001

W,0100

W,0010 R,0110

SR
EG

t

Standard Fault Planing Technique: Def-Use Pruning

Partition fault space into equivalence intervals
One FI per interval that ends in a use/read (green)

Better Pruning with Bit-Precise Access Tracing

Register bits are manipulated independently (e.g., CSRs)
Partition only if bit is actually accessed

AVR: CRC32 over �rst 500 Fibonacci numbers

SREG: 1-bit access: 96.4 % instructions, 2-bit access: 3.6%
9.42 · 105 injections ⇒ 7.9 · 105 injections (-16.17 %)

cd SailFAIL � Motivation 14/13

Bit-Precise Def-Use Pruning

0 1 2 3 4 5 6 7 8 9

0
1
2
3

R,0010

W,0011

R,0110

W,1010

R,1001

W,0100

W,0010 R,0110

SR
EG

t

Standard Fault Planing Technique: Def-Use Pruning

Partition fault space into equivalence intervals
One FI per interval that ends in a use/read (green)

Better Pruning with Bit-Precise Access Tracing

Register bits are manipulated independently (e.g., CSRs)
Partition only if bit is actually accessed

AVR: CRC32 over �rst 500 Fibonacci numbers

SREG: 1-bit access: 96.4 % instructions, 2-bit access: 3.6%
9.42 · 105 injections ⇒ 7.9 · 105 injections (-16.17 %)

cd SailFAIL � Motivation 14/13

Bit-Precise Def-Use Pruning

0 1 2 3 4 5 6 7 8 9

0
1
2
3

R,0010

W,0011

R,0110

W,1010

R,1001

W,0100

W,0010 R,0110

SR
EG

t

Standard Fault Planing Technique: Def-Use Pruning

Partition fault space into equivalence intervals
One FI per interval that ends in a use/read (green)

Better Pruning with Bit-Precise Access Tracing

Register bits are manipulated independently (e.g., CSRs)
Partition only if bit is actually accessed

AVR: CRC32 over �rst 500 Fibonacci numbers

SREG: 1-bit access: 96.4 % instructions, 2-bit access: 3.6%
9.42 · 105 injections ⇒ 7.9 · 105 injections (-16.17 %)

cd SailFAIL � Motivation 14/13

	Motivation

