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Abstract—While processing external events, in the form of
interrupt requests (IRQs), is a key concern of digital control
systems, processing these events can be of different importance
for a system’s functionality. Therefore, it is necessary, especially
for real-time systems, to ensure that the handling of low-priority
IRQs does not interfere with high-priority interrupt-service routines
(ISRs) to prevent priority inversions. While prioritizing ISRs on
single-core machines is a long-solved problem, priority-strict
IRQ handling in multi-core systems is, as we will show, quite
challenging with current interrupt controllers.

With PSIC, we propose a hardware/software co-design that
ensures the priority-strict execution of the top-m ISRs on an
m-core machine at minimal interruption-induced overheads. We
developed a drop-in replacement for an off-the-shelf interrupt
controller that delivers IRQs in strict priority order while
achieving low delivering delays at moderate hardware costs.
Combined with a minimal IRQ software subsystem, which requires
no inter-core synchronization, PSIC guarantees a priority-strict
ISR execution on multiple cores.

I. INTRODUCTION

In event-driven control systems, external events are signaled
to the CPU by means of interrupt requests (IRQs). Upon
an IRQ, the processor performs a (software-invisible) call
to a subroutine, the interrupt-service routine (ISR), which
interrupts the current control flow and, on completion, resumes
to the interrupted program. On single-core systems, both,
IRQ delivery and IRQ processing, are typically priority strict:
Each IRQ source can be assigned an individual (and commonly
unique) priority and triggered IRQs are delivered in order
of their relative priority. The processor, in turn, accepts
the IRQ for processing only if its priority is higher than
the currently served ISR. Hence, ISR executions can nest
according to their priority. The interrupt controller (IC), a
(conceptually) dedicated hardware component, implements this
IRQ-acceptance protocol by buffering the external IRQs and
forwarding the IRQ with the highest priority to the CPU.

Priority strictness is an important property for real-time
systems: The IC implements a simple form of fixed-priority
preemptive scheduling, which we can employ to offload rate-
monotonic scheduling (RMS) or deadline-monotonic scheduling
(DMS) [16] of external (and possibly also internal [11]) events
to the hardware. Intuitively, a priority-strict IC for a multi-
core system would provide global fixed-priority preemptive
scheduling [7]: Given that there are m (identical) CPUs, at
any point in time, the ISRs of the top-m triggered IRQs get
executed on a CPU. Unfortunately, the existing ICs are not
priority-strict in the multi-core case, but they either fall back

to global partitioned scheduling (e.g., Infineon Aurix [26]), or
interrupt multiple cores and offload the coordination to the
software (e.g., ARM [1], RISC-V [27] or MPC5676 [17]),
which leads to priority inversions and overheads.

A. Contributions

So, instead of retroactively fixing the symptoms of a non-
priority-strict IC in software with all associated costs, we
propose a combined HW/SW approach for priority-strict IRQ
processing. Our key contributions are:

1) Identification of shortcomings in available ICs for priori-
tized multi-core interrupt processing.

2) Design of the first priority-strict multi-core interrupt
controller at moderate hardware costs.

3) A lock-free HW/SW IRQ-processing subsystem with
short and bounded violations of priority strictness.

We describe the shortcomings of existing ICs (Sec. II), before
we present our own priority-strict multi-core IC (Sec. III).
Afterwards, we quantify the induced hardware costs (Sec. IV)
and the end-to-end IRQ latency, before we discuss the related
work (Sec. V) and our design decisions (Sec. VI).

II. SYSTEMATIC VIOLATIONS OF PRIORITY STRICTNESS

First of all, we want describe prioritized multi-core IRQ
processing formally and highlight the problematic scenarios.
By showing the shortcomings of existing ICs, we argue that
only priority-strict IRQ delivery in combination with adequate
software routines can achieve priority-strict ISR processing.

A. System Model

In a system with n IRQ sources and m identical CPUs, each
IRQ source i ∈ I is configured with an arbitrary, but bounded,
priority pi > 0. When an external event at an IRQ source
triggers an interrupt request (IRQ), it inherits the source’s
priority. Although the source can buffer further external events,
each source has at most one pending IRQ, which we consider
pending until the IRQ handling completes. The IC delivers the
IRQ to a CPU, which interrupts the control flow, activates the
ISR, which then completes completes the IRQ.

The set P = {i, j, . . .} contains the pending and not-yet-
completed IRQs, while the CPU configuration C = ⟨j, i, –, . . .⟩
indicates the currently executing ISR (“–”: no ISR execution).
Without loss of generality, we assume that ambiguous priorities
are resolved systematically and that pi = i. In combination,
(P, C) describe the full IRQ-processing state at one point in
time. For example, ({15, 10, 3}, ⟨10, 15⟩) describes a two-CPU978-1-6654-0627-7/22/$31.00 ©2022 IEEE
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Global IRQ Delivery (✓) × (✓) ✓ (✓) ✓
Lowest-Priority Delivery (✓) × × (✓) (✓) ✓
IRQ Migration × ✓ × × ✓ ✓

TABLE I: Feature Matrix of available interrupt controllers

system with three pending IRQs, where CPU 0 processes ISR
10 and CPU 1 works on ISR 15, while IRQ 3 makes no progress.
Furthermore, we define the CPU priority as the priority of the
currently processed IRQ or zero if no ISR is running.

We say that the system (currently) processes IRQs pri-
ority strict, iff its CPUs process the top-m elements of P
(topm(P) ⊆ C). In hard real-time systems, violations of priority
strictness are only tolerable if they are temporary and bounded
in length, such that we can account for them as overheads in
the real-time analysis. Therefore, we have to avoid systematic
violations of priority strictness (e.g., priority inversion) and
should aim for minimal system-software overheads to achieve
low worst-case bounds. In the following, we want to look at
situations where off-the-shelve ICs (see also Tab. I) induce
systematic violations and, therefore, force the system software
to use mitigation strategies that demote the systematic violations
to temporary ones.

B. Global IRQ Delivery

For priority strictness, IRQs cannot be bound to specific
CPUs but they must be scheduled globally to avoid situations
where an CPU would be available, but the IC configurations
prohibits the delivery of an IRQ to this CPU. For example, if
all IRQs in a two-CPU system are bound to the CPU 0, the
system is not priority strict if more than one IRQ is pending:
({1, 3, 5}, ⟨5, –⟩).

Looking at commercially-available multi-core ICs, many
already have shortcomings in this basal property: On the
Interrupt Router (IR) of the Infineon Aurix [26], each IRQ
source is connected to exactly one CPU. While ARM’s General
Interrupt Controller (GIC) [1] and the platform-level interrupt
controller (PLIC) of RISC-V [27] deliver an IRQ globally,
they might interrupt multiple CPUs, which then execute the
same ISR. All ISR execution then try to claim the IRQ,
only one being successfull, which introduces an unavoidable
interference to the system. The Interrupt Controller (INTC)
of MPC5676 [17] always delivers IRQs to both CPUs and
leaves synchronization to software. Only the APIC system of
IA-32/AMD64 machines with its I/O APIC [13] is able to
deliver an IRQ prioritized to a single CPU.

C. Lowest-Priority Interruption

Furthermore, IRQs have to be delivered to the CPU with the
lowest sufficient priority: To prevent priority inversions from
low-priority IRQs, we raise the CPU priority during the ISR
execution. Thereby, for newly ariving IRQs multiple CPUs can
have a sufficiently low priority for acceptance. However, the IC

systematically violates priority strictness if it delivers the IRQ
to a CPU that has not the lowest of the sufficient priorities. For
example, in state ({3, 4}, ⟨4, 3⟩), both CPUs have a sufficiently
low priority to accept and IRQ with pi = 5. However, if we
deliver the IRQ to CPU 0, the system transitions into the
violating state ({5, 4, 3}, ⟨5, 3⟩).

From the ICs that support global IRQ delivery, GIC and
PLIC only guarantee that the IRQ is sent to one (or many) of
the CPUs with sufficiently low priority, which results in the
described systematic violation. If the INTC delivers globally,
it delivers the IRQ to both CPUs. Only the APIC system
supports a delivery mode (001) that targets the CPU with
the lowest priority. However, lowest-priority IRQ delivery
and CPU-priority check are decoupled: Once delivered to the
lowest-priority CPU, ISR execution only starts when the CPU
priority becomes sufficiently low to accept the IRQ. Thereby,
a delivered IRQ is stuck at the CPU, although another CPU
could drop its priority even further becoming an even better
target for the IRQ.

D. IRQ Migration and ISR Preemption

Lastly, we argue that priority strictness directly requires
IRQ/ISR migration between CPUs. Clearly, for priority strict-
ness, high-priority IRQs must interrupt already executing low-
priority ISRs. However, when another CPU has a sufficiently
low priority, the interrupted ISR must migrate to that CPU,
even if the interrupting high-priority ISR still executes. Without
IRQ migration, priority strictness is systematically violated:
An IRQ with pi = 5 in state ({3, 4}, ⟨4, 3⟩) results in the
state ({3, 4, 5}, ⟨4, 5⟩). On completion of ISR 4, CPU 0 must
continue the execution of ISR 3 to remain priority strict.
However, without ISR migration, IRQ 3 sticks to CPU 1,
which results in the violating state (({3, 5}, ⟨–, 5⟩).

Therefore, priority strictness requires us to migrate IRQs
and ISR between CPUs. On the software side, we can migrate
the ISR’s CPU state (i.e., registers) by a context switch, but
the IC also must provide migration of all IRQ-related state to
another CPU interface, if necessary.

On GIC systems, ISRs cannot migrate as the interrupted
CPU must also signal the IRQ completion, which results in
an atomically executed priority drop to the interrupted IRQ.
On MCP5676 and APIC systems, the CPU-local interfaces
keep track of interrupted ISRs but provide no software access
to the stored state. On the Aurix IR, nested IRQs and IRQ
migration are possible since all of the IRQ-related state is
accessible from software. And on a PLIC system, ISR migration
is unproblematic since every CPU can complete every IRQ
and the IC does not keep track which CPU executes an ISR.

E. Problem Statement

As we see, the commonly available multi-core ICs induce
different systematic violations of priority strictness. For real-
time systems, we have to use mitigation techniques to demote
these systematic violations to temporary ones. Examples for
such techniques are ISR threads [14] or the retro-active redis-
tribution of IRQs via inter-processor interrupts. However, this
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Fig. 1: The PSIC Interrupt Controller

induces overheads into the hot path of IRQ processing, which
directly prolongs the worst-case path. Even worse, software-
managed ISR distribution requires a consistent view on the
global ISR-execution state, which features a synchronization
challenge that can become a scalability burden if solved in
software alone [15, 6].

III. PRIORITY-STRICT MULTI-CORE IRQ PROCESSING

As ISR migration is mandatory, PSIC is a co-design of an
multi-core IC that delivers IRQ globally to the lowest-priority
CPU and a minimal software layer that handles, without using
global synchronization (i.e., spinlocks), ISR preemption and
IRQ migration. Thereby, we deliver IRQs priority strict and
execute ISRs with minimal priority-strictness violations.

A. The PSIC Interrupt Controller

In the following, we will describe the design of the PSIC
IC (see Fig. 1), highlight situations where race conditions
put priority strictness at risk, and show our solutions to these
pitfalls. Thereby, we argue that PSIC always delivers the top-m
IRQs (out of n IRQs) to m CPUs, even in the presence of
concurrent subsystem reconfigurations.

1) The PSIC Interfaces: The controller exposes interfaces to
three different sides: (1) n edge-triggered IRQ sources (eIRQ),
(2) m IRQ output wires (cpuInt) that interrupt the CPUs, and
(3) The memory-mapped configuration and command interface
(MMIO). While IRQ in- and CPU outputs are asynchronous
logic signals, the memory bus delivers read- and write requests
sequentially and PSIC is able to delay their completion.

At the MMIO interface (see Tab. II), the user can configure
and control the operation of PSIC. We designed the interface
to be similar to the RISC-V PLIC specification [27] in order
to ease porting of existing software stacks. At a CPU interface,
the user can read/write the CPU priority atomically without

MMIO Register Access Description

cpu.cpuPrio r/w Get/set CPU priority (immediately)
cpu.trigger w Trigger an IRQ
cpu.claim r Claim a delivered IRQ
cpu.redeliver w Request the redelivery of an IRQ
cpu.complete w Complete an IRQ

irq.intPrio r/w Get/set priority of future IRQs
irq.intMask r/w En/Disable an IRQ source

TABLE II: PSIC Configuration and Commands

synchronization and priority changes have an immediate impact
such that a high-priority ISRs is never interrupted by a low-
priority IRQ. Furthermore, we can trigger new IRQs and
claim, redeliver, or complete already delivered ones.
For each IRQ source, we can configure the priority of future
IRQs or temporarily disable (mask) the source.

Like the PLIC, the PSIC chip, after being configured by
the system software, routes pending IRQs to CPU interfaces,
which interrupt the CPU via the cpuInt wire. The CPU
starts the ISR, which claims the IRQ by reading the IRQ id
from the command register. After completion, the ISR signals
completion by writing the IRQ id to the PSIC command register.
We also introduced a trigger command, which allows the
software to release IRQs for a given IRQ source, and the
redeliver command, which requests the redistribution of
an already delivered IRQ to another CPU.

2) PSIC Operation: In its operation, PSIC covers the global-
and lowest-priority delivery requirement discussed in Sec. II.
Technically, we fulfill these requirements by guaranteeing that:
(1) The minimal number of low-priority CPUs are interrupted
if new high-priority IRQs arrive. (2) After an interruption,
claim always yields one of the top-m pending IRQs. (3)
CPU-priority changes have an immediate impact and inhibit
the delivery of priority-inverted IRQs.



For each IRQ source, we store its priority (intPrio) and
a mask bit (intMask) to temporarily disable the source (see
Fig. 1). Furthermore, we buffer a single pending IRQ per source
and its irqPrio, which it inherits from the source at release
time. With two bits, we track the IRQ-delivery state: pending
marks a filled IRQ buffer, while delivered indicates that
the IRQ was already delivered to a CPU interface. Throughout
PSIC, the IRQ is identified by its IRQ-source id and its priority
at release time.

In PSIC, the number of sources (n) and the width of the
priority field (P ) are independently configurable. By default,
we allocate twice as many priority levels than IRQ sources
(P = ⌊log2 n⌋ + 2), since priority-space scarcity makes it
hard to uniquely map interrupts and software-only tasks into a
unified priority space [9].

At the CPU interface, we have a P-bit–wide cpuPrio
register, which is the single source of truth for a CPU’s
configured priority. Furthermore, each CPU interface has a
message box that has room for one delivered IRQ (msgIRQ,
msgPrio) and the msgValid bit marks as filled, while the
msgDirty bit indicates that the IRQ must be redelivered.

The central part of PSIC’s logic is the delivery of IRQs
from the sources to the message boxes, from where a CPU
can claim it. For this, the Max-IRQ component, which is
a (⌊log2n⌋ + 1)-deep and P-bit wide comparator tree, finds
the highest-priority IRQ that is pending, not masked, and not
already delivered, and forwards it (irqMax, irqMaxPrio)
to the IRQ-Deliver component.

From the CPU side, Min-CPU, a (⌊log2m⌋+ 1) deep tree,
select the lowest-priority CPU, whereby current CPU priority
(curPrio) is either configured priority cpuPrio or the
priority of the message-box IRQ (msgPrio). Please note
that msgPrio is always higher than cpuPrio and that the
delivery of an IRQ immediately raises the actual CPU priority.

PSIC delivers the top-m IRQs in a multi-cycle arbitration:
In each cycle, the IRQ-Deliver component compares
irqMaxPrio to cpuMinPrio and delivers the highest-
priority IRQ to the lowest-priority message box (cpuMin).
On delivery, (1) we mark the IRQ source via an one-hot
access as delivered, (2) we (optionally) retract an already
delivered low-priority IRQ from the selected message box
and immediately clear its delivered flag, and (3) we fill the
message box with (irqMax, irqMaxPrio) and mark it valid
and not dirty. As delivery immediately raises the CPU priority,
we exclude the IRQ source and the receiving message box
in the next arbitration round. Therefore, cpuMinPrio and
irqMaxPrio converge until a steady state is reached and the
arbitration ends. While arbitration is ongoing, PSIC delays all
commands that modify the pending or delivery state of an IRQ
(claim, complete, . . . ). If cpuPrio remains untouched
and no further IRQ is triggered, an arbitration takes at most
m cycles.

The four MMIO commands have the following effect: (1)
trigger releases an IRQ by mimicking an active eIRQ. (2)
claim clears a CPU’s message box and atomically increase
cpuPrio to msgPrio, whereby the software takes over

responsibility for the event from the hardware. Please note
that claiming does not affect the curPrio or pending/de-
livered state of the IRQ source. (3) redeliver clears the
delivered bit of an IRQ source, which provokes a redelivery
of the IRQ. (4) complete clears pending and delivered
at the IRQ source, making room for a new IRQ. Please note,
that only claim influences the CPU priority, while any CPU
can complete an IRQ without changing its priority. If priority
stacking is desired, it has to be done in software.

B. Synchronization at the HW/SW Boundary

In Sec. II, we argue that priority-strict IRQ processing is a
global synchronization challenge. By centralizing prioritized
multi-core IRQ delivery in the IC, we already avoid most
shared state between CPUs. However, we also must take a look
at the hardware/software boundary and prevent race conditions
between CPUs and PSIC.

At the MMIO interface, PSIC relies on the memory bus to
deliver commands (see Tab. II), which are all performed by a
single read or write, sequentially to achieve a total ordering.
While command interleaving between CPUs is arbitrary, we
force a consistent ordering for each CPU by using a single
per-CPU memory address to issue the commands (trigger,
claim, redeliver, complete), which we bit-pack with
their argument into a single 32-bit word. With RISC-V’s
preserved program order [28], this allows processors to issue
their commands in the intended order, even in the presence of
instruction reordering and without fence instructions.

The other important aspect are priority changes (intPrio,
cpuPrio, and claim) during an ongoing arbitration. Since
intPrio only changes the priority of future IRQs, it has no
influence on the current arbitration round and is unproblematic.
claim, which only updates the CPU priority from the message-
box priority, also has no influence as the update does not
influence curPrio.

Only for cpuPrio, we have to take a deeper look: Con-
ceptually, PSIC sorts CPUs according to their priority and
delivers the top-m IRQs in decreasing order. If the CPU priority
changes, the CPU can “jump” to any position in this priority-
sorted CPU sequence, whereby previous delivery decisions
could become invalid. For example, if an IRQ 4 arrives in
the CPU state ⟨3, 100⟩, we deliver it into the message box of
CPU 0. If now CPU 1 drops its priority to zero, while the
arbitration is still going on or before the CPU claimed the
IRQ, we have to reconsider this delivery decision to end up
with the state ⟨3, 4⟩. We achieve this by invalidating all filled
message boxes on every cpuPrio by setting the dirty flag.
With the IRQ-Retract component, which blocks delivery
and commands while being active, we remove the dirty IRQs
from the message boxes by marking them as not delivered at
their IRQ source. At worst, a cpuPrio results in a retraction
and re-arbitration of the top-m IRQs (2 ·m cycles).

Summarized, PSIC fulfills the requirements for priority-strict
IRQ delivery to the CPU interface, even in the presence of
concurrently-issued reconfiguration commands.



context_t ctx[MAX_IRQ];
irq_t active[MAX_CPU];

void ISR_3() {
enable_int();
// ... workload ...
disable_int();

setup(&ctx[3], &ISR_3);
cpu.complete(3);
cpu.setPrio(0);

}

void PSIC_ISR_entry() {
id = cpu.getCurrent();
irq_t prev = active[id];
save(&ctx[prev]);

irq_t next = cpu.claim();
if (prev != 0)
cpu.redeliver(prev);

active[id] = next;
load(&context[next]);

}

Listing 1: The PSIC ISR-Trampoline

C. Preemptable Interrupt Service Routines

While the PSIC IC already delivers the top-m IRQs priority
strict, we also must support IRQ/ISR migration to avoid
systematic priority-strictness violations (see Sec. II). Neverthe-
less, even with PSIC, we will introduce a small, unavoidable
temporary violation if a running ISR is interrupted.

On the IC side, we do not have to migrate state between CPU
interfaces as PSIC does not associate IRQ-specific information
to the claiming CPU interface. Therefore, every CPU can
complete any IRQ, whereby PSIC is indifferent whether ISRs
migrate between CPUs before they complete.

For the software side, we make ISRs migrateable by mapping
each ISR to a light-weight thread [14, 12] with small a co-
routine context (stack, general-purpose registers, instruction-
and stack-pointer, processor-status word). These ISR threads are
not managed by the OS scheduler but are only preempted and
activated by an intermediate PSIC-provided ISR trampoline (see
Lst. 1). Our usage of ISR thread is inspired by Hofer et.al. [12],
who used a similar technique to allow for blocking system
calls during ISR execution.

At boot, we allocate a co-routine context for each ISR (ctx)
and initialize it (not shown) such that the first resume starts the
ISR execution (see Lst. 1, ISR_3()). During the actual ISR
workload, we unblock the interrupts in the processor-status
word to allow for further, higher-priority, interruptions. Please
note that this has no influence on PSIC. After the ISR finishes,
we reinitialize its context, complete the IRQ, and drop the
CPU priority to zero.

The actual ISR-entry function (PSIC_ISR_entry()) only
preempts the currently running control flow and switches to
the activated ISR thread. After saving the current CPU context,
which might be an ISR or the main program (prev=0),
we claim the IRQ at the CPU interface and redeliver, if
necessary, the interrupted IRQ, before loading the context
of the triggered ISR. Also, save()/load() save and restore
also the interruption-blocking state in the processor-status word.

With PSIC, we avoid software-based inter-core synchroniza-
tion altogether (i.e., spinlocks) and get away with delaying
interrupts CPU locally, while we save and restore the CPU
contexts, thus provoking at most a temporary priority-strictness
violation. This is possible as every unfinished IRQ always has
exactly one owner: On release, the IRQ source owns the IRQ,
which transfers ownership on delivery to the CPU interface.

The trampoline function then takes ownership by claiming the
IRQ and its context. On preemption, a CPU temporarily owns
two IRQs but immediately hands back the low-priority IRQ
to PSIC with redeliver. Thereby, no further inter-CPU
synchronization is necessary all software-state synchronization
is CPU local and results in bounded worst-case delays as our
trampoline is not only lock free but also loop free.

IV. EVALUATION

We base our prototype on the Rocket chip generator [5],
which is an open-source implementation of the RISC-V I64G
ISA specification [28] and is able to generate a cycle-accurate
RTL simulation as Verilog code for multi-core systems. We
built PSIC as a drop-in alternative to the standard PLIC IC.
In the following, we will quantify PSIC’s hardware costs, the
IRQ-delivery latency, and measure the end-to-end overhead of
PSIC-assisted, preemptable multi-core interrupt processing.

A. Hardware Costs

For the hardware costs, we synthesized the generated Verilog
code for a Xilinx XC7000 series FPGA with Vivado 2019.1.
Both the original PLIC and our PSIC are synthesized for up to
32 CPU interfaces and up to 128 interrupt-sources. For each
instance we recorded the amount of lookup tables (LUTs) and
registers used and the maximum frequency at which it can
be clocked. At this point, due to missing licenses, we did not
perform the final routing step. However, for small systems (up
to 4 CPUs and 128 IRQ source) the difference before and
after routing was negligible (< 10 LUTs and registers). For
reference, a single I64G Rocket core requires around 20k LUTs
and 9k registers.

For Fig. 2a, we fix the number of IRQ sources (n=32) and
compare the hardware costs to the original PLIC. With regards
to logic, PSIC starts with a high base overhead of 196 percent
for two CPUs, which, however, drops to 17 percent for 32
CPUs. For two CPUs, we require 59 percent more registers,
which however decreases with the number of CPUs and even
becomes negative for more than eight CPU interfaces. PSIC
requires less registers for many CPUs as we only store one
intMask per IRQ source, while PLIC has one intMask
per IRQ and per CPU. Both register and LUT overhead scale
almost linearly with regard to CPU interfaces and the high
base overhead of PSIC becomes negligible for large multi-core
systems.

For Fig. 2b, we fixed the number of CPUs to 8 and varied the
number of IRQ sources. For eight IRQ sources, PSIC requires
108 percent more LUTs, which decreases to 52 percent for 128
IRQ sources. For registers, PSIC’s overhead is negligible and
for 128 IRQ sources, we require only 7 percent more registers.
This register overhead stems from the extended IRQ-source
state (delivered, irqPrio).

While PSIC’s area requirements scale well with the number
of CPUs and IRQs, the required comparator trees impact
the maximum clock frequency. To quantify this impact, we
synthesized and routed systems with 4 CPUs and a varying
number of IRQ sources for a XC7X020 FPGA on which the
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complete design can be maximally be clocked at 100 Mhz (see
Fig. 2c). While the PLIC always stay above 45 MHz, the PSIC
suffer from longer propagation paths. For eight IRQ sources
the maximum frequency of PSIC is only moderately lower
(53.19 MHz, -9%) than the PLIC (58.46 MHz). However, for
128 IRQs, PSIC’s maximum clock rate drops to 26.43 MHz
while the PLIC still achieves 55.42 MHz. Nevertheless, for
the targeted 4 CPU system RISC-V system this is still higher
than the 25 MHz that the complete system achieves on the
XC7X020 FPGA.

An analysis of the critical path shows that it starts
at intMask, continues through the Max-IRQ and the
IRQ-Deliver components, and finally passes through the
State Port to write a delivered register. More collo-
quial, the critical path of PSIC is the setting of the delivered
bit for the selected IRQ with the maximum priority. In Sec. VI,
we will outline how a possible mitigation for this issue.

B. IRQ Interference

In order to demonstrate the impact of (missing) priority-
strict IRQ delivery on a multi-core system, we constructed a
benchmark scenario, where multiple CPUs execute, at different
(low) priorities, a cyclic test while an external timer periodically
(every ti µs) triggers a sufficiently high-priority IRQ that could
be delivered to all CPUs. When a CPU is interrupted, the
ISR claims the IRQ, executes 16 NOPs, and completes the
IRQ, before resuming to the cyclic test, which continuously
measured how long it takes to count up to a constant value
(C = 65535). For this benchmark, we did not use ISR threads
(see Sec. III-C) but only compare the impact of priority-strict
IRQ delivery. However, ti and C are chosen such that the ISR
completes before the next periodic event.

We execute the test on a 4-core, 25 MHz system with 128
IRQ sources running on a XC7X020 FPGA. The CPUs are
prioritized by their id (1-4), while the IRQ has priority 5 and,
thus, can interrupt all CPUs. We compare the PLIC, which
interrupts all CPUs with a sufficiently low priority, to PSIC,
which delivers the IRQ only to the lowest-priority CPU.

CPU1 CPU2 CPU3 CPU4

ti = 200 PLIC 5489 5489 5487 5484
PSIC 5475 5243 5243 5243

ti = 50 PLIC 6267 6261 6253 6243
PSIC 6228 5247 5247 5247

TABLE III: Time taken (µs) for one loop with C = 65535

Tab. III shows the average cycle-count duration over 64
runs. For ti = 200µs, every CPU in the PLIC system suffers
uniformly from the interruptions (+4.69%), while PSIC only
induces latency on CPU 1 (+4.42%). With a higher timer
frequency (ti = 50µs), the PLIC interference increases to
19.32 percent.

Furthermore, PSIC generally induces a smaller overhead
(18.7 % for ti = 50µs) on the interrupted core than the PLIC
(19.32 %). In PLIC systems, each interrupted CPU tries to
claim the interrupt, which leads to multiple interfering memory-
bus requests, of which only a single one will successfully return
an IRQ id. With PSIC, only a single CPU is interrupted and
issues a claim command.

C. End-to-End Latency

We also perform an end-to-end test of our priority-strict
IRQ processing in combination with the ISR threads and
migration activated. For this, we measured the interrupt latency
of a software-generated interrupt: On the lowest-priority CPU,
we trigger an IRQ (trigger) and measure, with RISC-V’s
mcycle register, the time until the ISR workload starts to
execute.

We repeatedly (n=4800) execute the test on a 4-core, 25
MHz system with 128 IRQ sources running on a XC7X020
FPGA and ignore the first five results to only measure with
warm CPU caches. On average, the PSIC system has an end-to-
end ISR latency of 6.11±0.09 µs. Over all runs, we observed
a maximum interrupt latency of 6.68 µs.

To put these numbers in perspective, we also measure the
time for a normal co-routine-context switch that saves the
current CPU context to memory and loads another one. As
shown in Sec. II-D, the priority-strict execution of ISRs in a



multi-core system always requires us to migrate ISRs, which
will also entail CPU-state migration. Please note, that also a
non-priority strict IRQ subsystem requires a “half” context
switch to save the interrupted CPU state.

We measured a regular context switch 4800 times on
the 25 MHz RISC-V machine and we, again, ignoring the
first five executions. On average, a full context switch takes
3.49±0.04 µs, or about 87 cycles. On top of this, PSIC adds
66 cycles to the latency.

For a complete picture, we also must look at arbitration de-
lays and priority-change–induced re-arbitration (see Sec. III-B)
cycles. Since the worst case is hard to trigger, we give the
theoretical worst-case IRQ-delivery delay from eIRQ until a
CPU can claim the IRQ. Without interference form other IRQs
or CPUs, PSIC takes 3 cycles to deliver an IRQ to an CPU.
In general, the worst-case delay dmax (in cycles), where k is
the number of CPU-priority changes during the arbitration is:

dmax = 2︸︷︷︸
A

+ m︸︷︷︸
B

+(m− 1)︸ ︷︷ ︸
C

+2 ·m · k︸ ︷︷ ︸
D

In the worst-case scenario, our IRQ of interest i is triggered
together with at least (m−1) IRQs of lower priority. After two
cycles (A), arbitration starts and takes one cycle per IRQ (B).
Before arbitration finishes and the CPU could claim, (m− 1)
high-priority IRQs are triggered and PSIC performs another
(m − 1) deliveries (C). At this point, our IRQ i became the
lowest-priority element of topm(P). Any further IRQ would
either evict i from the top-m set, delaying its delivery until
the higher-priority ISR have completed, or leave P unchanged.
To further prolong the worst case, the CPUs perform k change
priorities, each earning a full retraction and arbitration (2m)
(D). In the worst case, when priority changes are exactly 2m
cycles apart, this leads to a theoretically unbound IRQ delivery
delay.

However, in real systems the number of priority changes
is bounded. For example, our ISR trampoline (see Sec. III-C)
updates the CPU priority exactly once for an IRQ. As there are
at most m executing ISR k is at most m and we end up with
an upper bound of 2m2+2m+1. In the case of four CPUs, the
worst case IRQ-delivery latency is 41 cycles. Combined with
the observed worst-case of the ISR trampoline, the PSIC IRQ
processing on a 4-core system has a worst-case IRQ latency
of 208 cycles (or 8.32 µs at 25 MHz) when caches are warm
(or the trampoline code is placed in scratchpad memory).

V. RELATED WORK

On the hardware side, real-time–targeted execution platforms
often focus on the un-interrupted control flow and leave out
IRQ delivery: While the T-CREST project [24] designed
a time predictable platform that included many worst-case
optimized HW components (i.e., processor, caches, network-
on-chip, memory controller), they left out the IC as a source
of systematic disturbance. The FlexPRET architecture [29]
supports the efficient and predictable execution of mixed-
criticality systems by mapping OS threads to hardware threads,

but has no special support for multi-core systems, or inter-core
thread migration; their prototype does not include an IC.

For priority-strict IRQ delivery, only ICs for single-core
systems were proposed: Foyo and Mejia-Alvarez [9] first
employed a custom IC with enough flexibility to provide a
unified priority space for threads and IRQs. Strnadel [25] let the
IC monitors the system load and delays IRQ delivery to avoid
IRQ overloads. The EventIRQ [18] IC inserts ISRs directly
into an OS queue and only interrupts the CPU if the IRQ
priority is sufficiently high.

Another related area of specialized coordination hardware
are scheduling co-processors [4, 3, 2, 21], which replace a
software-implemented OS scheduler. While PSIC can provide
a similar service for global fixed-priority scheduling, when
threads are mapped onto IRQ sources, as done by SLOTH [12],
our approach does not require a restructuring of the whole
system but it is only a drop-in replacement for a regular IC.

On the software side, the rate-monotonic priority inversion
problem between IRQs and threads is addressed from two
directions: avoidance or integration. We avoid priority inver-
sions if the OS delays lower-priority IRQs [10, 8] while high-
priority threads (or ISRs) execute. For example, Patel et al. [23]
propose a timer subsystem that arms core-local timers only
if the associated ISR has a higher priority than the currently
running thread.

With the integration of ISRs into the OS scheduling, the
impact of rate-monotonic inversions is limited to a short time
period. While the OS still services the IRQ immediately,
the ISR only starts an ISR thread, which the OS then
schedules regularly [14, 22]. This technique is also part of the
PREEMPT_RT patch set for Linux [19].

A notable combination of avoidance and integration is
the SLOTH project [12], which use a unified priority space
for IRQs and threads and offload the entire fixed-priority
scheduling to the IC. Thereby, there is no difference between
thread and ISR and the all scheduling is performed by the IC.
With MultiSloth, they also provide a multi-core variant [20]
that, however, only supports partitioned scheduling, where
thread/ISRs do not migrate between cores.

VI. DISCUSSION

A. Length of the Critical Path

In our hardware-cost evaluation (see Sec. IV-A), we have
seen that the maximum clock frequency decreases with a rising
number of IRQs due to the comparator-tree depth and the
delivery one IRQ per cycle. While this did not cause problems
on 4-cores (@ 25 MHz) system with 128 IRQ sources, it might
negatively impact larger configurations. Nevertheless, we could
split up the critical path at the IRQ Deliver component and
insert an intermediate register between the Max IRQ and the
Min CPU component, such that each IRQ delivery happens in
two cycles. In cycle one, we find the high-priority IRQ and the
low-priority CPU, and deliver it in cycle 2. Thereby, we should
be able to trade delivery latency for operation frequency.

However, such a split could bring up new synchronization
problems, especially with command processing or priority



changes, as both might invalidate the comparator-tree result.
Our initial experiments suggest that such a split of the
critical path can be done without requiring significantly more
invalidation logic.

B. Bounded Interrupt Latency

Another issue, we want to discuss, is the theoretically
unbounded IRQ delivery latency within the IC (see Sec. IV-C).
Since CPU-priority updates causes a retraction and re-delivery
of the top-m IRQs, an adversarial CPU that changes its priority
every 2m− 1 cycles could, in theory, stall the IRQ delivery
forever. While this scenario does not occur during the priority-
strict processing of IRQs, we wanted to quantify the problem.
We added an adversarial CPU, which changes its priority in
a tight loop, to the benchmark from Sec. IV-C. The results
show no discernible difference in the average (±0.33%) or
the maximum (+1.8%) IRQ latency. Therefore, we argue that,
while our hardware design allows an adversarial CPU to mount
a denial-of-service attack, such an attack is not feasible in
end-to-end integrations of PSIC.

C. Interface incompatibilities

We designed PSIC to be a drop-in replacement for RISC-V’s
PLIC with the noticeable exception of IRQ-source masking.
While the PLIC can mask IRQ sources on a per-CPU level,
PSIC only allows a global masking of IRQ sources. We
deliberately broke with the PLIC specification here, as per-
CPU masking of IRQ sources is, if combined with global
priority-strict multi-core IRQ delivery, not trivial.

Due to masking, each CPU is only target for a subset of all
IRQs. Since these subsets can overlap, it becomes unclear that
priority-strict IRQ processing actually means. We can either
deliver IRQs strictly from high to low if possible, or we can try
maximize the priority-sum of delivered IRQs by formulating
an IRQ–CPU-assignment optimization problem. In both cases,
while we believe that the latter is an NP problem, an integrated
view on all pending IRQs and all CPUs would be required,
which is hard to implement efficiently in hardware. Thus, we
argue, that global IRQ masking is the only acceptable choice
for priority-strict multi-core interrupt-controllers. In order to
remain compatible with the PLIC interface, we map the same
intMask bit once for each CPU. Thereby, disabling an IRQ
for one CPU disables the source for the whole system and, at
least, avoids synchronization problems in legacy software.

D. Software subsystem

The PSIC IC delivers IRQs in a priority-strict fashion,
while our software layer adds ISR migration, yielding global
preemptive fixed-priority scheduling of ISRs. However, our
proposed IC also allows for other operation modes, making
PSIC versatile for different system designs. For example, if
interruptions are disabled during ISR execution, PSIC performs
global non-preemptive fixed-priority scheduling of ISR. If the
overhead of ISR threads is undesirable, one can just use the
priority-strict IRQ delivery and nest ISRs. While these usage
scenarios do not fulfill our definition of priority strictness, they

could result in lower system overheads or in lower latencies
for high-priority IRQs.

VII. CONCLUSION

With the transition to multi-core real-time systems, delivering
interrupt requests faces the problem of providing a strict
and analyzable delivery semantic while solving a system-
wide synchronization challenge. We showed that the currently
available interrupt controllers induce systematic violations
of priority strictness when delivering IRQs, which requires
software-based mitigation techniques that prolong the critical
IRQ latency. With PSIC, we presented a HW/SW co-design
that consists of a priority-strict multi-core interrupt controller
with a thin layer of system software to support ISR preemption
and migration without the need for further software-based inter-
core synchronization. PSIC achieves, at moderate hardware
costs, a priority-strict IRQ processing with an average end-to-
end, from the external signal until the user-defined ISR starts,
latency of 153 cycles, while the worst-case takes 208 cycles
for a 4-core RISC-V system. Thereby, PSIC provides a solid
base for real-time systems with global IRQ processing at fixed
priorities.
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